

Appendix H: Hydrologic and Hydraulic Models

Amite River and Tributaries Study East of the Mississippi River, Louisiana Feasibility Study with Integrated Environmental Assessment

March 2025

The U.S. Department of Defense is committed to making its electronic and information technologies accessible to individuals with disabilities in accordance with Section 508 of the Rehabilitation Act (29 U.S.C. 794d), as amended in 1998. For persons with disabilities experiencing difficulties accessing content, please use the form @ https://dodcio.defense.gov/DoDSection508/Section-508-Form/. In this form, please indicate the nature of your accessibility issue/problem and your contact information so we can address your issue or question. For more information about Section 508, please visit the DoD Section 508 website. https://dodcio.defense.gov/DoDSection508.aspx

CONTENTS

1.0	GEN	NERAL	DESCRIPTION OF WORK	5		
2.0	SUN	/MARY	OF PREVIOUS WORK	5		
3.0	SOF	TWAR	E	6		
	3.1	HEC-H	HMS 4.5			
	3.2	HEC-F	RAS 5.0.7	6		
4.0	MOI	DEL DE	VELOPMENT	7		
	4.1		OLOGIC MODELING			
		4.1.1	Basin Hydrology			
		4.1.2	Precipitation and Runoff			
		4.1.3	HEC-HMS Model Methodology	12		
		4.1.4	HMS Calibration			
		4.1.5	Modeling the Design Storms	14		
	4.2	HYDR	AULIC MODELING			
		4.2.1	Overview	15		
		4.2.2	Model Geometry	16		
		4.2.3	Terrain and Land Cover	17		
		4.2.4	Boundary Conditions	19		
		(1)	1D Inflow Hydrographs	19		
		(2)	Lateral Inflow Hydrographs	21		
		(3)	2D Inflow Hydrographs	21		
		(4)	Stage Boundaries			
		(5)	Storm Surge Stage Boundaries	24		
		4.2.5	Incorporation of Comite River Diversion, East Baton Rouge, and			
			West Shore Lake Pontchartrain FRM Projects			
		(1)	Comite River Diversion Project			
		(2)	East Baton Rouge FRM Project			
		(3)	West Shore Lake Pontchartrain FRM Project			
		4.2.6	Calibration			
		4.2.7	Compound Flooding			
		(1)	Gage Correlation			
		(2)	Gage Lag Times			
5.0	RES	SULTS		43		
6.0	CHA	ANGE C	ONDITION ASSESSMENT	48		
	6.1	CHAN	GE CONDITION ASSESSMENT: HYDROLOGY NON-			
			ONARITY	48		
	6.2					
	_		SSMENT TOOL			
	6.3	_	GE CONDITION ASSESSMENT: SEA LEVEL RISE ANALYSIS	_		
	6.4		GE CONDITION ASSESSMENT: LITERATURE REVIEW			
		6.4.1	USACE Change Condition Literature Review	59		

		(1)	Temperature	59
		(2)	Precipitation	59
		(3)	Streamflow	
		6.4.2	4 th National Climate Assessment	60
		6.4.3	Other Change Condition Literature Relating to the Amite River Basin	60
	6.5	CHAN	IGE CONDITION ASSESSMENT: VULNERABILITY	
			IGE CONDITION RISK TABLE	
7.0			UNCERTAINTY	
8.0	REF	ERENC	CES	63
9.0				
	9.1		X H-1: PRODUCTION RUN WSE MAPS	
	9.2	ANNE	X H-2: PREDOMINANT VERSUS COMPOUND FLOOD PARISON FIGURES	
	9.3		X H-3: COMPOUND FLOOD ANALYSIS - GAGE LAG TIME	101
			S	104
	9.4		X H-4: WSE OUTPUTS FOR HIGH SEA LEVEL RISE	
			ITIVITY RUNS	106
	9.5		X H-5: SEA LEVEL ANALYSIS TOOL RSLC RATE SENSITIVITY	400
	9.6		SX H-6: HYDROLOGIC PARAMETERS	
	9.0		X H-7: APPENDIX G: HYDROLOGIC AND HYDRAULIC MODELS	
	0.7		CRIPTION OF PAST ALTERNATIVES	
	9.8		X H-8: DEWBERRY H&H MODELING REPORT	
LIST	r OF	TABLE	S	
		•	ated ADCIRC Outputs for the Modeled AEP Events near the West Edge	
		•		
		-	ic Model Locations for Application of EBR Hydrographs	
		-	rison of Compound and Predominant Flooding Damages	
			cent peak flows Kendall's Correlation with Pass Manchac stages anchac peak stages with Port Vincent flows	
			age Lag Time Analysis for Storm Events Affecting Pass Manchac	
			Condition Risks from Precipitation, Flood Frequency, and Sea Level	
LIST	ΓOF	FIGURE	≣S	
Figu	re H-1	HEC-H	MS Model Geometry (left) and HEC-RAS Model Geometry (right)	7
-			River Basin in Louisiana and Mississippi	
-			Storm Location and Isohyets	

Basin	
Figure H-5 Hydrologic Model Domain	
Figure H-6 Example Hydrologic Nodes for Claycut Bayou	
Figure H-7 Example Precipitation Hyetograph and Flow Output Hydrograph	
Figure H-8 Model Geometry for 2026 and 2076 Conditions	
Figure H-9 LADOTD 2017 LIDAR Dataset	18
Figure H-10 Table 8 from Dewberry Report: Summary of Manning's N Values for 2D F	Flow Areas
	19
Figure H-11 Amite River Upstream Boundary Location	20
Figure H-12 Comite River Upstream Boundary Location	20
Figure H-13 Pretty Creek Upstream Boundary Location	20
Figure H-14 Lateral Inflow Location Representing Flow from Bluff Creek into the Amite	e River21
Figure H-15 2D Boundary Condition Line for Flow into Claycut Bayou near Airline Hig	•
Figure H-16 Stage Boundary Locations at Lake Maurepas for Amite River (left) & Blin	
(right)	
Figure H-17 2D Stage Boundary Locations at Lake Maurepas	
Figure H-18 Locations of CRD and EBR Projects	
Figure H-19 Location of Incorporation of Comite River Diversion Project into Hydraulic	
Figure H-20 Authorized Flow-Flow Rating Curve for Comite River Diversion	
Figure H-21 Cross Sections where Blackwater Bayou and Beaver Bayou EBR Flows	
Applied	_
Figure H-22 Cross Section where Jones Creek EBR Flows Were Applied	
Figure H-23 Cross Sections where Ward Creek and Bayou Fountain EBR Flows Were	
Figure H-24 25-Year EBR With Project (Red) versus Without Project (Blue) Hydrogra	_
Jones Creek	
Figure H-25 West Shore Lake Pontchartrain With vs. Without Project Max WSE Differ	
100-Year Event and Amite Eligible Structure Inventory	
Figure H-26 USGS Gage Locations Used for Bulletin 17C Analysis (red diamonds) wi	
Basin	
Figure H-27 Amite River at Darlington, comparison of flow-frequency analysis to H&H	
Figure H-28 Amite River at Magnolia, comparison of flow-frequency analysis to H&H I	_
Figure H-29 Amite River at Denham Springs, comparison of flow-frequency analysis t	
modeling	
Figure H-30 Amite River at Port Vincent, comparison of flow-frequency analysis to H8	
modeling	
Figure H-31 Illustration of Water Surface Profiles in Coincident Frequency Analysis fro	
1110-2-1415	
Figure H-32 RAS Profile Outputs from River Reach "Amite Below Comite"	

Figure H-33 Difference in maximum water surface elevations for the 2026 25-year compou	ınd
and predominant events	38
Figure H- 34 Darlington Stage Frequency Curve 2026	44
Figure H- 35 Darlington Stage Frequency Curve 2076	44
Figure H- 36 Magnolia Stage Frequency Curve 2026	45
Figure H- 37 Magnolia Stage Frequency Curve 2076	45
Figure H- 38 Denham Springs Stage Frequency Curve 2026	46
Figure H- 39 Denham Springs Stage Frequency Curve 2076	46
Figure H- 40 Port Vincent Stage Frequency Curve 2026	47
Figure H- 41 Port Vincent Stage Frequency Curve 2076	47
Figure H-42 Darlington Gage Non-Stationarity	49
Figure H-43 Darlington Gage Trend Test	49
Figure H- 44 Port Vincent Gage Non-Stationarity	50
Figure H-45 Port Vincent Gage Trend Test	50
Figure H-46 Annual-maximum of mean monthly streamflow trends for stream segment	
08001284 (adjacent to Baton Rouge)	52
Figure H-47 Annual-maximum of mean monthly streamflow trends for stream segment	
08000705 (furthest downstream)	53
Figure H-48 CHAT-predicted precipitation trends in the Amite Basin	54
Figure H-49 Estimated Sea Level Change from Sea-Level Calculator for Lake Pontchartrai	in at
Frenier	56
Figure H- 50 Location of SLC Gages Relative to Model Boundary	58
Figure H- 51 Comparison of Total Intermediate RSLC to High RSLC Curve	
Figure H-52 Scenario Comparison Over Time map for MVN. The only vulnerability shown f	for
HUC-4 watershed 0807 is for recreation.	61

1.0 GENERAL DESCRIPTION OF WORK

The U.S. Army Corps of Engineers (USACE), New Orleans District (MVN), Hydraulics, Hydrology, and Coastal Engineering Branch (HH&C) conducted hydrologic and hydraulic modeling for the Amite River and Tributaries (AR&T) Flood Risk Management (FRM) project. This analysis aimed to estimate water surface elevations to guide project formulation for flood mitigation measures in the AR&T basin. Hydrologic and hydraulic models of the Amite River Basin were initially provided by the Louisiana Department of Transportation and Development (LADOTD) and subsequently modified by HH&C for use in this watershed modeling. These models were originally built by Dewberry Engineers, Inc. The Dewberry Report is referenced several times in this appendix and should be referred to for more background about the model development (Dewberry Engineers Inc., 2019 [1]).

Hydrologic and hydraulic modeling was performed for the 10%, 4%, 2%, 1%, 0.5%, and 0.2% Annual Exceedance Probability (AEP) rainfall events for baseline conditions (year 2026) and future conditions (year 2076). Initially, the Tentatively Selected Plan (TSP) proposed a dam in Darlington, LA, for a 0.01% AEP. However, this was later revised to a non-structural plan. To assess residual flood risk from coastal flood risk, hydraulic modeling was also conducted for coastal storm events. For this, downstream boundary conditions in Lake Maurepas were set to storm surge elevations calculated by ADCIRC modeling, matching the same annual exceedance probabilities.

The coastal models were run with negligible rainfall to isolate the effects of storm surge. Maximum water surface elevations (WSE) were computed for all rainfall and coastal-only model scenarios. Additionally, HH&C provided a predominant WSE for each AEP event for both existing and future conditions. The predominant WSE was determined by selecting the higher of value between the rainfall and coastal flood surfaces for each AEP. The WSE raster files were given to the Project Delivery Team (PDT) for use in economic, environmental, and engineering analyses. The horizontal and vertical datums, for all georeferenced files in this study are the NAD 1983 and NAVD 1988 (Geoid 12B) datums respectively.

2.0 SUMMARY OF PREVIOUS WORK

The Amite Rivers & Tributaries study was funded by the Bipartisan Budget Act of 2018, H.R. 1892—13, Title IV, Corps of Engineers—Civil, Department of the Army, Investigations. This act allocated funds for expenses related to the completion, or initiation and completion, of flood and storm damage reduction studies, including shore protection

studies, which are currently authorized or are authorized after the enactment date of the act, with the goal of reducing risk from future floods and hurricanes.

The hydrologic and hydraulic models used in this study were provided by the Louisiana Department of Transportation and Development (LA DOTD). LA DOTD contracted Dewberry Engineers Inc. (Dewberry) to develop a suite of modeling tools known as the Amite River Basin Numerical Model (ARBNM). This model was designed to simulate hydrology and hydraulics within the Amite River Basin (ARB) and to quantify the potential consequences of simulated floods. Forte & Tablada, Inc. and FTN Associates, Ltd. supported Dewberry on this project. Forte & Tablada, Inc. provided survey services, while FTN Associates, Ltd. offered independent quality control, stakeholder engagement, and hydraulic modeling support.

USACE utilized the ARBNM to evaluate various alternatives: Future Without Project (FWOP), Baseline, Darlington Dam, Lily Bayou, Bluff Creek, Darlington Creek Dry Detention Ponds (Alternative 8A), Sandy Creek Dry Detention Pond (Alternative 8C), Spanish Lake Pump Station and Gate Operation, Highway 22, Port Vincent Bridge, Amite River Re-meandering, and Highway 16. Out of these, five alternatives were selected for modeling: FWOP, Baseline, Alternative 8A, Alternative 8C, and Darlington Dam. Descriptions of all alternatives and results for the five selected alternatives that were modeled are detailed in a previous draft of the appendix, Annex H-7, titled "Appendix G: Hydrologic and Hydraulic Models."

3.0 SOFTWARE

3.1 HEC-HMS 4.5

Version 4.5 of the Hydraulic Engineering Center's Hydrologic Modeling System (HEC-HMS) was used to calculate rainfall runoff estimates.

3.2 HEC-RAS 5.0.7

Version 5.0.7 of the HEC's River Analysis System (HEC-RAS) was used to calculate hydraulic routing as well as flooding due to coastal storm surge.

4.0 MODEL DEVELOPMENT

The hydrologic and hydraulic models of the Amite River Basin were provided to the MVN HH&C Branch by the LADOTD. The development, calibration, and validation of these models were carried out by Dewberry Engineers Inc. Details of these processes are outlined in the Amite River Basin Numerical Model Project Report (Dewberry Report). This appendix describes the modifications made to the models after the Dewberry Report. Figure H-1 illustrates the model geometry for the HMS and RAS models.

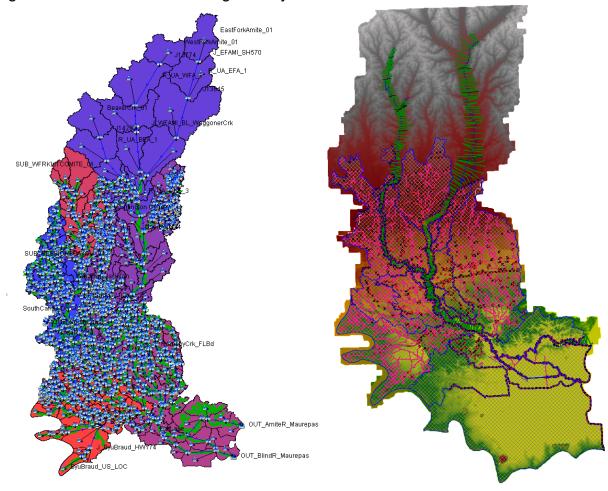


Figure H-1 HEC-HMS Model Geometry (left) and HEC-RAS Model Geometry (right)

4.1 HYDROLOGIC MODELING

4.1.1 Basin Hydrology

The Amite River Basin spans approximately 2,200 square miles across Mississippi and Louisiana. The Amite River flows for about 117 miles in a predominantly southerly direction through these states. The river begins with an East Fork and a West Fork in southwest Mississippi. These forks are the steepest sections of the Amite River, starting at elevations exceeding 450 feet and descending to around 200 feet over a length of approximately 49 miles. The forks converge just south of the Mississippi-Louisiana border. The middle portion of the Amite River extends for about 61 miles, dropping approximately 180 feet from the confluence of the upper forks to the confluence with the Comite River. The Comite River, a right-bank tributary joining the Amite River near Denham Springs, is the Amite's largest tributary. The lower portion of the Amite River flows for roughly 54 miles and discharges into Lake Maurepas. This segment is the flattest, descending from approximately 20 feet to nearly sea level. Near French Settlement, downstream of Port Vincent, the Amite River Diversion Canal branches off, redirecting a portion of the river's flow southwest to the Blind River, which also feeds into Lake Maurepas. Lake Maurepas is connected to Lake Pontchartrain via Pass Manchac and surrounding marshes. Lake Pontchartrain, in turn, connects to the Gulf of Mexico through The Rigolets, Chef Menteur Pass, and additional marshes. This connection allows some tidal influence in Lake Maurepas from the Gulf of Mexico. Figure H-2 shows the boundary of the Amite River Basin.

Figure H-2 Amite River Basin in Louisiana and Mississippi

4.1.2 Precipitation and Runoff

Six precipitation events were evaluated: the 10-year, 25-year, 50-year, 100-year, 200-year, and 500-year average recurrence intervals, each modeled as 96-hour duration events. Precipitation hyetographs for each event were developed based on rainfall intensities from the National Oceanic and Atmospheric Administration's (NOAA) Atlas 14 Point Precipitation Frequency Estimates. In the original storm formulation by Dewberry, the storms were designed with concentric elliptical isohyets, with the maximum rainfall occurring at the storm center near Olive Branch, Louisiana. During the modeling of the Darlington Dam, the storm location and orientation were adjusted, and these changes were retained in the non-structural alternative modeling. Figure H-3 shows the location and orientation of the isohyets. The isohyet precipitation scaling was applied using the HMS gage weight method, where each subbasin has a scaling factor between 0 and 1 that adjusts the rainfall volume. Since the subbasins do not perfectly align with the isohyets, area-weighted averages were used to estimate gage weights for each subbasin.

Figure H-3 Design Storm Location and Isohyets

Figure H-4 presents estimates of precipitation intensity for various durations and annual exceedance probabilities in the Amite River Basin, as derived from NOAA Atlas 14. The total depth at the center of the isohyet ellipse for each design storm was 11.29, 13.75, 15.72, 17.79, 20.00, and 23.11 inches, respectively. When averaged across the gage weights and areas for each isohyet, these rainfall totals align with the median values provided by Atlas 14 for the corresponding storm intensities.

Annual exceedance probability (1/years)									
Duration	1/2	1/5	1/10	1/25	1/50	1/100	1/200	1/500	1/10
5-min	0.565 (0.458-0.689)	0.708 (0.572-0.865)	0.819 (0.658-1.00)	0.969 (0.751-1.22)	1.08 (0.822-1.39)	1.20 (0.880-1.57)	1.32 (0.928-1.77)	1.49 (1.00-2.04)	1.6 (1.06-2
10-min	0.828 (0.671-1.01)	1.04 (0.838-1.27)	1.20 (0.963-1.47)	1.42 (1.10-1.79)	1.59 (1.20-2.03)	1.76 (1.29-2.30)	1.94 (1.36-2.59)	2.18 (1.47-2.98)	2.3 (1.55-3
15-min	1.01 (0.818-1.23)	1.26 (1.02-1.55)	1.46 (1.17-1.79)	1.73 (1.34-2.18)	1.94 (1.47-2.47)	2.15 (1.57-2.80)	2.36 (1.66-3.16)	2.66 (1.79-3.64)	2.8 (1.89-4
30-min	1.52 (1.23-1.86)	1.91 (1.54-2.33)	2.20 (1.77-2.70)	2.61 (2.02-3.29)	2.92 (2.21-3.73)	3.24 (2.37-4.23)	3.57 (2.50-4.77)	4.01 (2.70-5.49)	4.3 (2.85-6
60-min	2.05 (1.66-2.50)	2.55 (2.06-3.11)	2.94 (2.36-3.60)	3.46 (2.69-4.37)	3.88 (2.94-4.95)	4.30 (3.14-5.60)	4.72 (3.31-6.32)	5.31 (3.57-7.27)	5.7 (3.77-7
2-hr	2.58 (2.11-3.12)	3.19 (2.60-3.87)	3.67 (2.97-4.46)	4.32 (3.38-5.40)	4.83 (3.69-6.12)	5.35 (3.94-6.92)	5.88 (4.15-7.80)	6.60 (4.48-8.97)	7.1 (4.73-9
3-hr	2.90 (2.38-3.49)	3.60 (2.94-4.34)	4.14 (3.37-5.01)	4.89 (3.85-6.09)	5.47 (4.20-6.90)	6.07 (4.50-7.83)	6.69 (4.75-8.84)	7.54 (5.14-10.2)	8. 1 (5.43-
6-hr	3.47 (2.88-4.14)	4.37 (3.61-5.22)	5.09 (4.18-6.11)	6.10 (4.85-7.56)	6.90 (5.35-8.65)	7.73 (5.78-9.90)	8.60 (6.16-11.3)	9.79 (6.74-13.2)	10. (7.17-1
12-hr	4.06 (3.40-4.80)	5.27 (4.40-6.25)	6.26 (5.19-7.45)	7.66 (6.16-9.46)	8.80 (6.90-11.0)	9.99 (7.55-12.7)	11.3 (8.14-14.7)	13.0 (9.03-17.4)	14 (9.71-
24-hr	4.68 (3.96-5.49)	6.22 (5.24-7.31)	7.48 (6.26-8.83)	9.30 (7.56-11.4)	10.8 (8.53-13.4)	12.4 (9.42-15.6)	14.0 (10.2-18.2)	16.4 (11.5-21.8)	18 (12.4-
2-day	5.38 (4.59-6.26)	7.15 (6.08-8.33)	8.61 (7.27-10.1)	10.7 (8.78-13.0)	12.4 (9.92-15.3)	14.2 (11.0-17.9)	16.2 (11.9-20.8)	18.9 (13.3-24.9)	21 (14.4-
3-day	5.86 (5.02-6.77)	7.72 (6.60-8.95)	9.26 (7.86-10.8)	11.4 (9.43-13.8)	13.2 (10.6-16.2)	15.1 (11.7-18.9)	17.1 (12.6-21.9)	19.9 (14.1-26.1)	22. (15.2-2
4-day	6.26 (5.39-7.21)	8.16 (7.00-9.43)	9.72 (8.29-11.3)	11.9 (9.87-14.4)	13.7 (11.1-16.7)	15.6 (12.1-19.5)	17.6 (13.1-22.5)	20.4 (14.5-26.7)	22. (15.6-2
7-day	7.32 (6.35-8.37)	9.23 (7.98-10.6)	10.8 (9.26-12.4)	13.0 (10.8-15.5)	14.8 (12.0-17.8)	16.6 (13.0-20.6)	18.6 (13.9-23.6)	21.4 (15.3-27.8)	23. (16.4-3
10-day	8.25 (7.20-9.39)	10.2 (8.86-11.6)	11.8 (10.2-13.5)	14.0 (11.7-16.7)	15.8 (12.9-19.0)	17.7 (13.9-21.8)	19.7 (14.8-24.9)	22.5 (16.2-29.1)	24. (17.3-3
20-day	10.9 (9.59-12.3)	13.2 (11.6-15.0)	15.1 (13.2-17.2)	17.7 (14.9-20.7)	19.7 (16.2-23.5)	21.9 (17.3-26.6)	24.1 (18.2-30.0)	27.1 (19.6-34.7)	29. (20.7-
30-day	13.2 (11.7-14.8)	16.0 (14.1-18.0)	18.1 (15.9-20.5)	21.1 (17.8-24.5)	23.3 (19.2-27.5)	25.6 (20.3-30.8)	27.9 (21.2-34.5)	31.0 (22.6-39.4)	(23.6-
45-day	16.2 (14.5-18.1)	19.6 (17.4-22.0)	22.2 (19.6-24.9)	25.4 (21.6-29.2)	27.9 (23.1-32.5)	30.2 (24.1-36.1)	32.6 (24.8-40.0)	35.6 (26.0-44.9)	37. (26.9-
60-day	18.9 (16.9-21.0)	22.9 (20.4-25.5)	25.7 (22.8-28.8)	29.2 (24.8-33.3)	31.7 (26.3-36.8)	34.1 (27.3-40.5)	36.4 (27.8-44.4)	39.1 (28.7-49.1)	41 (29.3-

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and annual exceedance probability) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Figure H-4 Point Precipitation Frequency Estimates from NOAA Atlas 14 for the Amite River Basin

A 96-hour precipitation duration was used for each design storm. This duration was selected because it maximized the stage in the Darlington Dam when the dam was the tentatively selected plan (TSP). After the TSP was changed to a fully non-structural plan, the 96-hour rainfall duration was retained since the without-project conditions had been validated using this duration.

Forecasts of the Amite River Basin over the project life predict an increase in urban development, which correlates with a rise in impervious areas and, consequently increased runoff. The project delivery team forecasted a 35% increase in urban growth over the project life. HH&C applied this forecast by increasing the impervious area percentages by 35% for future conditions (2076), affecting the hydrologic loss calculations. The total impervious area in the AR&T Basin models is 5.1% for 2026 and 6.9% for 2076 respectively. Annex H-6 at the end of this report provides of a summary of the infiltration values used in the HMS model.

4.1.3 HEC-HMS Model Methodology

Hydrologic modeling was conducted using the HEC-HMS model provided by the LADOTD. The model domain encompasses the entire Amite River Basin, spanning from southern Mississippi to southeast Louisiana. The Modified Clark (ModClark) transform method was selected for the subbasins, employing a gridded approach to refine travel times to the outlet of each subbasin based on starting location within the subbasin. The ModClark method uses the Clark parameters of time of concentration and storage. In some marshy areas near the downstream end of the watershed, short times of concentration were applied alongside large storage coefficients. This approach allowed those subbasins to drain slowly, in accordance with the standard hydrology of marshy regions. Hydrologic losses in the model were calculated using the Green and Ampt loss method, which estimates losses in a subbasin through five parameters: initial water content, saturated water content, wetted suction front, hydraulic conductivity, and percentage impervious area. Further discussion of these parameters is available in the Dewberry Report. The percent impervious data was updated with the 2019 USGS National Land Cover Dataset. Figure H-5 shows the geometry of the hydrologic model.

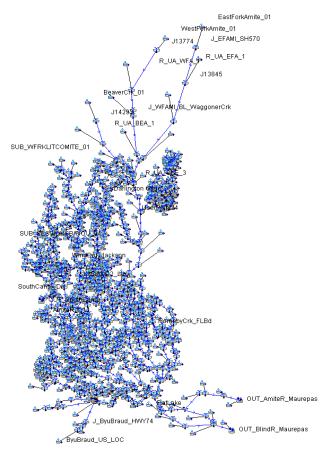


Figure H-5 Hydrologic Model Domain

Hydrologic routing calculations were performed using the Lag, Muskingum, and Modified Puls methods. All reaches using the Lag method had lag parameters set to zero, which routed runoff instantaneously through the respective reaches. The Muskingum method routes runoff using two parameters, X and K, which represent flow and channel characteristics. The Modified Puls method estimates flow in a reach based on reach geometry, slope, and roughness.

The HEC-RAS model was linked directly to the subbasin outflow at 422 riverine output locations. These 422 output locations served as unsteady inflow boundary conditions in the hydraulic model. As a result, the routing between HMS subbasins described above does not significantly impact the hydraulic modeling results. However, the routing methods are noted for future use of the model. Figure H-6 shows the sub-basins and junctions for Claycut Bayou, a tributary of the Amite River, with a portion of these hydrologic nodes used as model output locations.

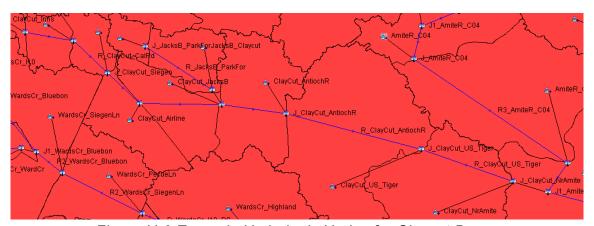


Figure H-6 Example Hydrologic Nodes for Claycut Bayou

4.1.4 HMS Calibration

The HMS model was calibrated using Stage IV historic gridded rainfall events, as detailed in the Dewberry report. The calibration aimed to align the model with observed excess precipitation percentages. These percentages were calculated based on observed hydrograph volumes, baseflow volumes, and basin-averaged precipitation volumes for several gages in the AR&T Basin.

4.1.5 Modeling the Design Storms

Each of the 96-hour AEP precipitation events was applied to the entire Amite River Basin in the HMS model. This application was performed for both the baseline year (2026) and

the future conditions (2076), with the latter incorporating adjusted imperviousness percentages. The isohyet precipitation scaling was applied using the HMS gage weight method, where each subbasin is assigned a scaling factor between 0 and 1 to dampen the rainfall volume. Since the subbasins do not align perfectly with the isohyets, area-weighted averages were used to estimate gage weights for each subbasin.

Each HMS model run generated a .dss file output of flow hydrographs at the subbasin stations in the HMS basin model. These hydrographs serve as input for the HEC-RAS model. Figure H-7 illustrates the 100-year precipitation hyetograph and flow output hydrograph for Sandy Creek near Mahoney Road.

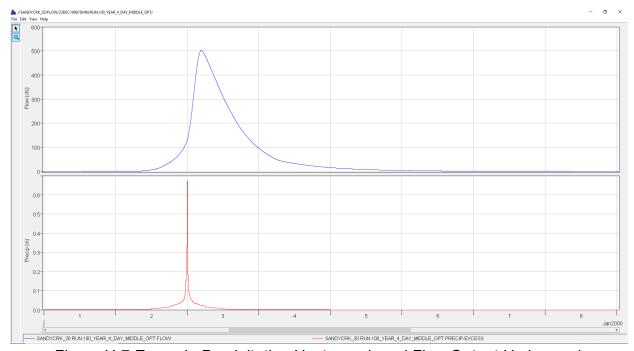


Figure H-7 Example Precipitation Hyetograph and Flow Output Hydrograph

4.2 HYDRAULIC MODELING

4.2.1 Overview

Hydraulic modeling was performed using the HEC-RAS model obtained from the LADOTD. The model is a one-dimensional/two-dimensional (1D/2D) unsteady flow hydraulic model. It covers the Amite River Basin from the Louisiana/Mississippi border to the outlet of Amite River at Lake Maurepas. The hydraulic model does not extend north of the state border but accounts for all runoff generated in the Amite Basin north of the

state line, as this area is included in the HMS model. A detailed discussion of model development and parameter selection is provided in the Dewberry Report.

4.2.2 Model Geometry

The model geometry represents the existing conditions of the Amite River Basin and was used for both existing conditions and future conditions. The primary distinction between existing and future conditions lies in the stage boundary conditions at Lake Maurepas, which are discussed in the Stage Boundary Conditions section. Figure H-8 illustrates the model geometry.

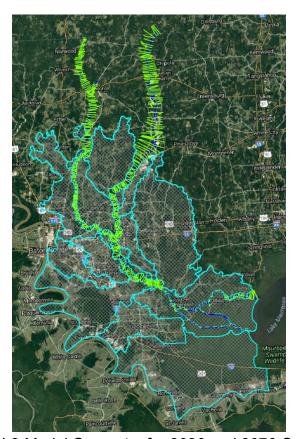


Figure H-8 Model Geometry for 2026 and 2076 Conditions

The Amite and Comite Rivers are modeled as one-dimensional reaches, while smaller tributaries and overland flow areas are modeled as two-dimensional regions. This approach was chosen to achieve finer detail in the Amite and Comite Rivers, where more detailed information about channel cross sections and hydraulic structures was available and where more precise results were desired. Conversely, less detailed results were required in overland flow areas and smaller tributaries, making two-dimensional modeling suitable for these regions. Two-dimensional cells ranged from areas 100x100 to

1000x1000 square feet, with smaller cells used in areas of complex topography and where higher levels of flooding detail were necessary. Additionally, smaller cells were employed near model features such as culverts, lateral structures, 2D area connections, and 2D inflow points to enhance model stability and accuracy.

4.2.3 Terrain and Land Cover

Topography data is used by 2D flow areas to calculate storage within and flow between 2D cells. This data is derived from a LIDAR dataset collected by the LADOTD in 2018, which has a spatial resolution of 2 feet. The terrain data is associated with the USA Contiguous Albers Equal Area Conic USGS projection. Figure H-9 shows the LADOTD LIDAR dataset.

Additionally, this model uses bathymetry data for the Amite and Comite Rivers, the Amite River Diversion Canal, Bayou Chenne Blanc and the Chinquapin Canal, collected by an LADOTD contractor in 2017 and 2018. A detailed description of LIDAR and bathymetric survey methods is provided in the Dewberry Report [1]. It is important to note that the RAS terrain does not include the bathymetry data for some tributaries to the Amite and Comite rivers. Instead, the tributary elevations are set to the water surface elevation detected by the LIDAR surveys. This omission affects flood levels by increasing overbank flooding around the tributaries and slowing the conveyance of flow to the downstream sections of the model. The impact of not accounting for the full tributary channel geometries is uncertain and depends on the tributary water surface elevation at the time of the LIDAR surveys compared to the full channel volumes. Potential solutions to this issue include conducting bathymetric surveys for each tributary or estimating cross-sections through alternative methods. The error introduced by not fully resolving each tributary was deemed acceptable for this study.

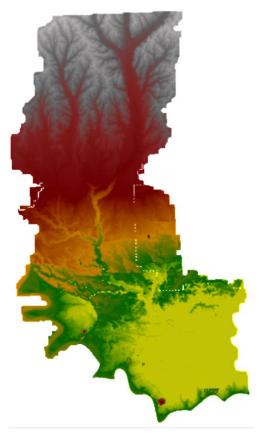


Figure H-9 LADOTD 2017 LIDAR Dataset

Land cover data is used to determine the distribution of Manning's roughness coefficients throughout the 2D flow areas. Manning's roughness coefficients are essential for calculating flow between 2D cells. This data was sourced from the 2011 National Land Cover Database. Manning's roughness coefficients were selected based on land cover type within each subbasins. Figure H-10 shows the Dewberry Report's Table 8: Summary of Manning's N Values for 2D Flow Areas.

Table 8: Summary of Manning's N Values for 2D Flow Areas					
2011 NLCD Code	Description	Manning's N			
11	Open Water	0.035			
21	Developed, Open Space	0.09			
22	Developed, Low Intensity	0.10			
23	Developed, Medium Intensity	0.10			
24	Developed High Intensity	0.15			
31	Barren Land (Rock/Sand/Clay)	0.10			
41	Deciduous Forest	0.12			
42	Evergreen Forest	0.12			
43	Mixed Forest	0.12			
51	Shrub/Scrub	0.12			
71	Grassland/Herbaceous	0.07			
81	Pasture/Hay	0.09			
82	Cultivated Crops	0.10			
91	Woody Wetlands	0.12			
95	Emergent Herbaceous Wetlands	0.12			

Figure H-10 Table 8 from Dewberry Report: Summary of Manning's N Values for 2D Flow Areas

The base and future year models utilize the same land cover and Manning's N values. Although the impervious area percentage was increased to account for anticipated urbanization, predicting specific changes in Manning's N values was deemed too uncertain. This uncertainty arises because it is impossible to determine which areas will be developed. Moreover, the impact of not adjusting Manning's N values is unclear. Development from low-intensity to high-intensity land cover would likely raise the average N value, while converting undeveloped land to low or medium intensity would lower it.

4.2.4 Boundary Conditions

Inflow boundary conditions for the hydraulic model were imported from results of the hydrologic model. The hydraulic model incorporates three types of inflow boundary conditions: 1D inflow hydrographs, lateral inflow hydrographs, and 2D inflow hydrographs. Additionally, there are two types of downstream boundary conditions: 1D stage hydrographs and 2D stage hydrographs.

(1) 1D Inflow Hydrographs

The upstream boundaries of the 1D portion of the hydraulic model include the Amite River and the Comite River near the Mississippi-Louisiana border, as well as Pretty Creek, located approximately 3 miles upstream of the Comite River. Inflow hydrographs are applied at these locations to represent flow from the upstream portions of their respective

basins. Figures H-11, H-12, and H-13 illustrate the locations of the upstream boundaries for the Amite River, Comite River, and Pretty Creek.

Figure H-11 Amite River Upstream Boundary Location

Figure H-12 Comite River Upstream Boundary Location

Figure H-13 Pretty Creek Upstream Boundary Location

(2) Lateral Inflow Hydrographs

Lateral inflow hydrographs are applied to the 1D portions of the model to represent flow from basins that are either not included in the 2D domain or are near intersections of the 1D and 2D domains. There are 99 lateral inflow hydrographs in the model. Figure H-14 illustrates the location of such a hydrograph, which represents flow from Bluff Creek into the Amite River.

Figure H-14 Lateral Inflow Location Representing Flow from Bluff Creek into the Amite River

(3) 2D Inflow Hydrographs

Inflow hydrographs are applied to the 2D portions of the model at 2D boundary condition lines. These lines are located at intervals along tributaries of the Amite and Comite Rivers, as well as smaller streams that flow into these tributaries. The hydrographs represent runoff from local rainfall and from upstream areas not captured by other boundary condition lines. There are 320 2D boundary condition lines in the model. Figure H-15 shows the location of a 2D inflow hydrograph that inputs flow to Claycut Bayou near Airline Highway.

Figure H-15 2D Boundary Condition Line for Flow into Claycut Bayou near Airline Highway

(4) Stage Boundaries

The downstream boundaries of the hydraulic model are stage boundaries representing the water surface elevation of Lake Maurepas. These stage boundaries are applied where the Amite River and Blind River enter Lake Maurepas at the lake's western end and where the 2D domain interacts with Lake Maurepas.

For baseline (year 2026) model runs, a "normal high water" stage was selected as the existing conditions no storm surge boundary condition. This value was derived from USACE gage 85420 Pass Manchac near Pontchatoula, located on the eastern end of Lake Maurepas. Data from 2019 and 2020 indicated that the 87.5-percentile stage was approximately 2.02 feet. To account for tidal fluctuation, 0.3 feet was added. An additional 0.2 feet was added to account for sea level change from 2020 to 2026, resulting in a stage boundary of 2.52 feet.

For future conditions (2076), sea level change projections indicated an increase of 1.9 feet from 2026 to 2076. Adding this to the Lake Maurepas stage yields a stage boundary of 4.42 feet. Figure H-16 shows the locations of the downstream stage boundaries for the 1D reaches, and Figure H-17 illustrates the locations of the 2D stage boundary condition lines. Sea level change calculations are detailed in Section 6.3.

Figure H-16 Stage Boundary Locations at Lake Maurepas for Amite River (left) & Blind River (right)

Figure H-17 2D Stage Boundary Locations at Lake Maurepas

(5) Storm Surge Stage Boundaries

A set of models with elevated downstream stage boundaries was run to evaluate the impact of storm surge on the project area. The lower portion of the Amite River Basin is affected by storm surge, which propagates through the mouth of the Amite River at Lake Maurepas. ADCIRC storm surge modeling conducted in 2017 for the West Shore Lake Pontchartrain (WSLP) project used a refined grid in the Lake Pontchartrain and Lake Maurepas region (West Shore Lake Pontchartrain Surge Hazard and Design Assessment, 2022 [2]). Results from this modeling for years 2020 and 2070 were used to estimate surge levels. Surge values at locations nearest to the five stage boundary condition (BC) locations were interpolated and extrapolated to 2026 and 2076, with adjustments made for sea-level change (SLC). The variance in ADCIRC output between the five boundary condition locations were considered negligible.

To incorporate storm surge in the HEC-RAS model, a constant stage hydrograph was applied at the downstream BC locations, resulting in flooding in the lower reaches of the RAS model. The SLC-adjusted values are detailed in Table H-1 below. The intermediate SLC curve was used to estimate future surge values. These storm surge boundary conditions were simulated with a negligible rainfall timeseries, approximately equal to the 0.99 AEP event for the region based on NOAA Atlas 14 precipitation estimates. The post-processing of these model outputs for economic analysis is discussed in the results section.

Table H-1 Interpolated ADCIRC Outputs for the Modeled AEP Events near the West Edge of Lake Maurepas

Return	2026 interpolated plus SLC (ft	2076 extrapolated plus SLC (ft
Frequency	NAVD 88)	NAVD 88)
0.1	5.5	7.0
0.04	6.6	8.3
0.02	7.7	9.5
0.01	8.9	10.6
0.005	10.0	11.7
0.002	11.5	13.2

4.2.5 Incorporation of Comite River Diversion, East Baton Rouge, and West Shore Lake Pontchartrain FRM Projects

Three major authorized projects in the Amite River Basin are expected to be completed or under construction by the baseline year of the Amite River and Tributaries Flood Risk Management (FRM) project (2026). These projects include the Comite River Diversion (CRD) project, the East Baton Rouge (EBR) FRM project, and the West Shore Lake Pontchartrain project. The effects of these projects were incorporated into the hydraulic modeling. The locations of the CRD and EBR projects in East Baton Rouge Parish are shown in figure H-18.

Figure H-18 Locations of CRD and EBR Projects

(1) Comite River Diversion Project

The Comite River Diversion will be situated approximately 20 river miles upstream from the confluence of the Comite and Amite Rivers. Figure H-19 illustrates the expected location of the Comite River Diversion within the hydraulic model. The project aims to redirect water from the Comite River westward to the Mississippi River, located between the cities of Zachary and Baker. The authorized flow rates for the diversion are based on measurements taken from the Comite River just upstream of the diversion.

To account for the Comite River Diversion into this hydraulic modeling, a lateral diversion feature was implemented at the designated location. This feature removes water from the Comite River according to a flow-flow rating curve. Figure H-20 displays the flow-flow rating curve used for this purpose. This rating curve is the sole representation of the diversion within the Amite model. As of October 2024, construction of the Comite River Diversion project remains incomplete.

Figure H-19 Location of Incorporation of Comite River Diversion Project into Hydraulic Model

Outlet Rating Curve			
US Flow	Outlet Flow		
0	0		
6850	4450		
10700	6150		
16200	9300		
22100	12700		
28400	16800		
37500	20800		
45800	23900		
50300	24900		
56200	25800		

Figure H-20 Authorized Flow-Flow Rating Curve for Comite River Diversion

(2) East Baton Rouge FRM Project

The authorized East Baton Rouge (EBR) FRM project includes clearing and snagging operations on five streams: Beaver Bayou, Blackwater Bayou, Jones Creek, Ward Creek, and Bayou Fountain. The feasibility study for the EBR project reported expected flow rates at the downstream ends of these streams, both with and without the EBR projects in place. However, the study prescribed low tailwater stages to represent conservative conditions and utilized shorter design events compared to the AR&T modeling. As a result, the AR&T model could not directly incorporate EBR RAS model flow rate outputs as an inflow boundary.

To estimate the impacts from the EBR project, the ratio of peak flow rates for the "with project" versus "without project" scenarios was calculated at downstream locations in the EBR model. For example, at Jones Creek the ratio of the peak flow rates was approximately 1.25, as shown in Figure H-24, which displays the with and without project hydrographs. Consequently, the inflow hydrographs at the five EBR locations in the AR&T Basin model were multiplied by 1.25 for sensitivity testing.

Figures H-21, H-22, and H-23 indicate the locations in the hydraulic model where the flow multiplier for the five EBR streams was applied. Table H-2 lists the location in the AR&T hydraulic model where the flow multiplier for each EBR stream was used. Sensitivity tests were conducted to assess how these adjustments would impact water surface evaluations (WSE) throughout the basin. These tests revealed that, even

adjacent to the inflow locations, WSE increases were less than 0.02 feet for the 25-year event.

Based on the results of the sensitivity runs, the 1.25 multiplier was not used in the main AR&T production runs. Therefore, the EBR project is not represented in the AR&T model results.

Table H-2 Hydraulic Model Locations for Application of EBR Hydrographs

EBR Stream	1D River and Reach	Cross Section	
Beaver Bayou	ComiteRiver Abv_AmiteR	22408.94	
Blackwater Bayou	ComiteRiver Abv_AmiteR	52579.85	
Jones Creek	AmiteRiver Blw_ComiteR	258117.4	
EBR Stream	2D Flow Area	Boundary Condition Line	
Wards Creek	BayouManchac	WardsCr_Manchac	
Bayou Fountain	BayouManchac	BFount_ByuManch	

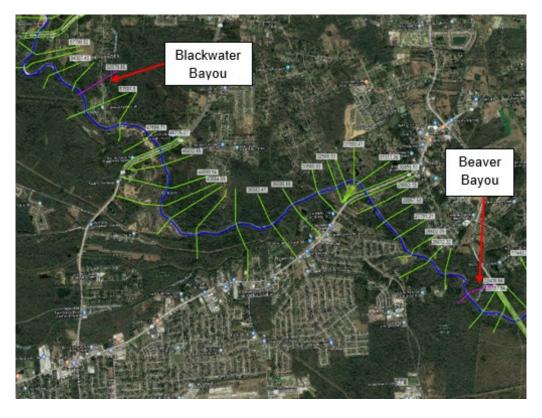


Figure H-21 Cross Sections where Blackwater Bayou and Beaver Bayou EBR Flows
Were Applied

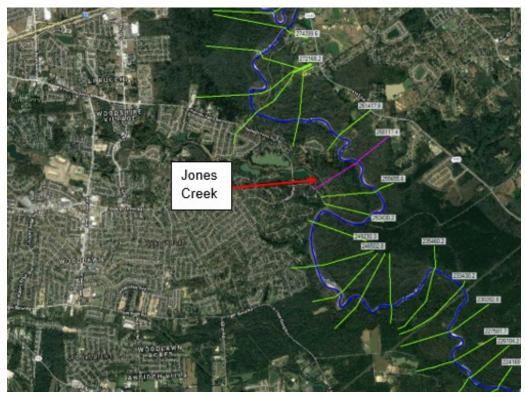


Figure H-22 Cross Section where Jones Creek EBR Flows Were Applied

Figure H-23 Cross Sections where Ward Creek and Bayou Fountain EBR Flows Were Applied

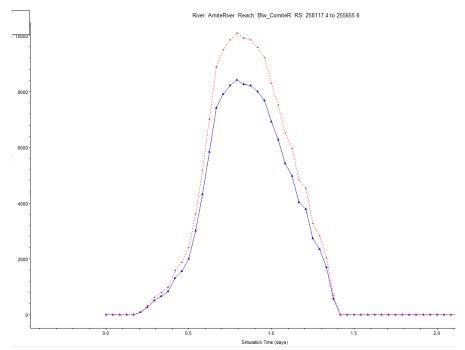


Figure H-24 25-Year EBR With Project (Red) versus Without Project (Blue)
Hydrographs at Jones Creek

(3) West Shore Lake Pontchartrain FRM Project

The West Shore Lake Pontchartrain Levee Project was not incorporated into the model geometry. Instead, the impact of the levee project on water levels in the Amite project area was determined using ADCIRC modeling, as documented in the West Shore Lake Pontchartrain Surge Hazard and Design Assessment. Figure H-25 illustrates the modeled increase in WSE according to ADCIRC modeling that compares scenarios with and without the WSLP project.

The dark blue portion of Figure H-25 shows the area that will be protected by the WSLP levee. The modeling suggests that the increase in WSE due to the WSLP project will be less than 0.1 feet within the AR&T project area. Although some areas just outside of the WSLP levee will experience higher flood levels because of the project, structures in these areas are not included in the Amite non-structural plan. This is because eligibility for the Amite project is based on susceptibility to flooding from the Amite River flooding.

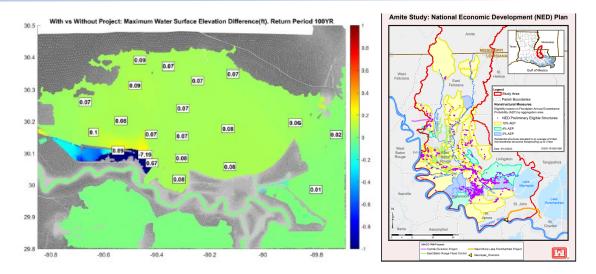


Figure H-25 West Shore Lake Pontchartrain With vs. Without Project Max WSE Difference for 100-Year Event and Amite Eligible Structure Inventory

4.2.6 Calibration

The Dewberry report details the calibration steps for the HEC-RAS model. The model was calibrated using both low and high flow events, aiming to match hydrograph timing, peak flows, and peak stages. The primary parameter adjusted during the Dewberry calibration was the Manning's roughness coefficient in the 1D channel reaches. The calibration was deemed sufficient, and the PDT did not create additional historic precipitation events to further validate peak flow rates and hydrograph timing in the RAS model. Expanding the validation would have significantly extended the project's schedule and budget. The Dewberry calibration was well documented, thorough, and utilized the most significant rain events on record.

MVN-HH&C validated the model results for the 96-hour design storm with the updated storm center location using Bulletin 17C streamflow frequency analysis. A discharge-frequency analysis was conducted at four USGS streamflow gages along the Amite River, each with at least 65 years of peak annual streamflow data. The analysis was performed using HEC-SSP software, following Bulletin 17C procedures. The gages are located at Darlington, Magnolia, Denham Springs, and Port Vincent, shown as red diamonds in Figure H-26.

The flow frequency curves calculated at these four USGS gages were compared to the HEC-RAS computed flows for the six AEP events, using existing conditions such as impervious area and boundary condition estimates representing 2018. Figures H-27 through H-30 display the results of this comparison. The modeled peak flow rates fall

within the 90% confidence interval of the computed flow frequency curves for every event at every gage, closely matching the expected flow rate for some of the AEP events calculated by the SSP analysis.

The comparison reveals consistent overestimation of flow by the RAS model during more frequent events (0.1, 0.04 AEP) and an underestimation of flow for less frequent events, with the Bulletin 17C curve showing a steeper change in flow estimates between the AEP events. One hypothesis for this trend is that the RAS outputs are based on rainfall frequency estimates from NOAA Atlas 14, which considers a larger dataset of observations than the Bulletin 17C peak annual streamflow observations for each gauges. Both methods carry uncertainty. One way to improve the Bulletin 17C analysis would be to add synthetic streamflow data using statistical techniques or enahnce confidence in the RAS model by calibrating with more historic storm events. Since all AEP storm model outputs factor into flood damage calculations, the impact of this uncertainty is unclear. However, since some RAS modeled AEP events are overestimated while others are underestimated compared to Bulletin 17C, the model is considered to accurately depict the hydraulics of the AR&T Basin.

Additionally, both methods produced similar estimates for the 0.01 AEP flow and generally align within the 90-percent confidence bounds. This supports the decision to use an equivalent gage record length for the HEC-FDA uncertainty analysis, which is based on the length of the annual maximum gage record for each of these four gages: Darlington (75), Magnolia (65), Denham Springs (85), and Port Vincent (73). According to the guidelines in Engineering Manual 1110-2-1619, "Engineering and Design Risk-based Analysis for Flood Damage Reduction Studies" (dated 1 August 1996,) 50-90% of the record length should be used for uncertainty analysis when flood frequency is based on an analytical distribution from a gage within the watershed of the point of interest. Based on this guidance, an equivalent gage record of 50 years was selected for the uncertainty analysis.



Figure H-26 USGS Gage Locations Used for Bulletin 17C Analysis (red diamonds) within AR&T Basin

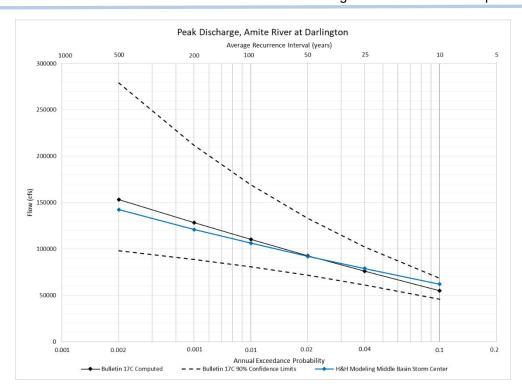


Figure H-27 Amite River at Darlington, comparison of flow-frequency analysis to H&H modeling

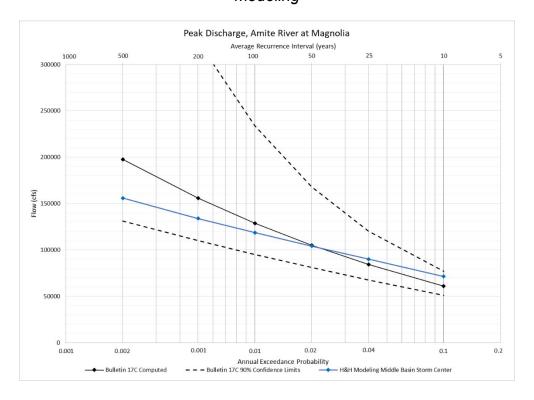


Figure H-28 Amite River at Magnolia, comparison of flow-frequency analysis to H&H modeling

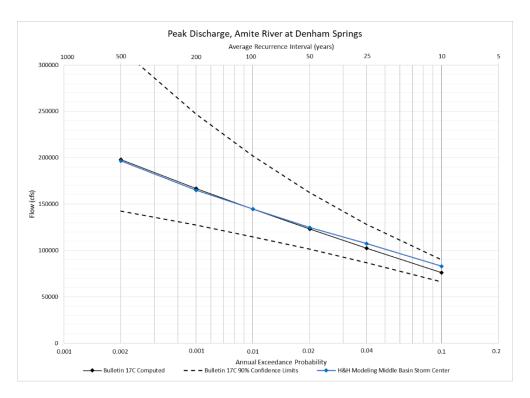


Figure H-29 Amite River at Denham Springs, comparison of flow-frequency analysis to H&H modeling

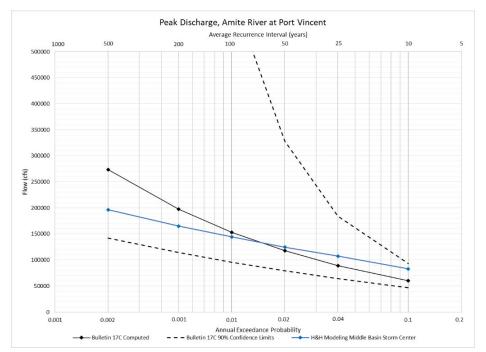


Figure H-30 Amite River at Port Vincent, comparison of flow-frequency analysis to H&H modeling

4.2.7 Compound Flooding

This study investigated the potential for compound flooding, which occurs when multiple flood forcings, such as rainfall and storm surge, happen simultaneously. The goal of the HH&C analysis is to determine the most likely maximum water surface elevation (WSE) for a given recurrence interval. Simultaneous river and coastal flooding can result in higher WSEs due to elevated tailwater stages, which impede inland drainage. However, the rarity of simultaneous large-scale rainfall and coastal events that impact the entire basin may render the compound-event WSE statistically insignificant for the purposes of this study.

Compound flood analysis (CFA), as outlined in EM 1110-2-1415, explores the statistical likelihood of simultaneous flooding using observed data. The analysis begins by estimating maximum water surface profiles for both fully coincident and fully independent flood events. This was accomplished by running three HEC-RAS models for each recurrence interval:

- Profile 1: rainfall flooding, storm surge stage boundary
- Profile 2: rainfall flooding, normal high water stage boundary
- Profile 3: negligible rainfall, storm surge stage boundary
- Profile 4: created by comparing profiles 2 and 3 and taking the higher of the two water surface elevations at every location in the model domain.

Profile 1 represents the full coincident WSE and profile 4 represents the independent WSE. Profile 1 is referred to as the compound flood profile and profile 4 is referred to as the predominant flood profile.

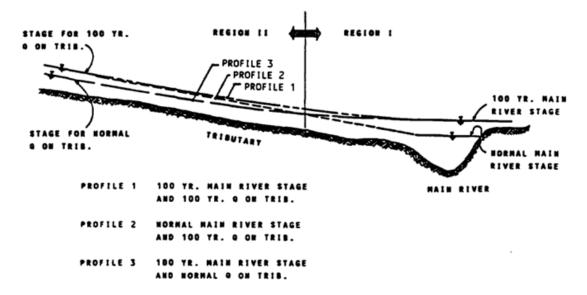


Figure H-31 Illustration of Water Surface Profiles in Coincident Frequency Analysis from EM 1110-2-1415



Figure H-32 RAS Profile Outputs from River Reach "Amite Below Comite"

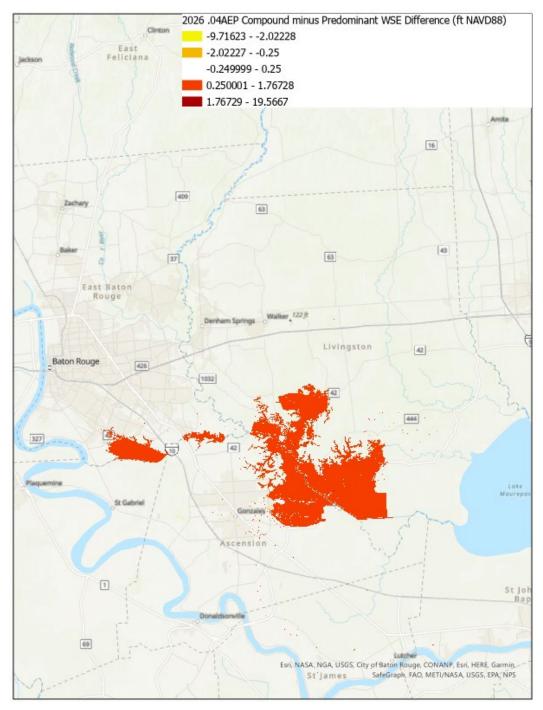


Figure H-33 Difference in maximum water surface elevations for the 2026 25-year compound and predominant events

As illustrated in Figure H-33, the consequences of assuming full independence versus full coincidence of flood events are most significant for the communities of French Settlement and Port Vincent. In these areas, the difference in WSE ranges from 0.25 and 1.75 feet. WSE changes of less than 0.25 feet (3 inches) were deemed insignificant for visualization purposes.

The spatial extent of the increased WSE due to full compounding is consistent across both the 2026 and 2076 models, as well as across different return frequencies. The plots comparing the 2076 25-year and 100-year events are presented in Annex H-2. Both models employed the intermediate sea level change curve, and a more detailed discussion on the impacts of relative sea level change can be found in Section 6.3.

Table H-3 displays damages associated with the 2076 25-year (0.04 AEP) and 100-year (0.01 AEP) predominant and compound events. The analysis reveals a 12 percent difference in damages for the 0.04 AEP comparison and a 7 percent difference for the 0.01 AEP comparison.

Table H-3 Comparison of Compound and Predominant Flooding Damages

	Compound Flooding	Predominant Flooding	%
			Difference
2076 0.04 AEP Flood	\$430,000,000	\$380,000,000	12%
Damages			
2076 0.01 AEP Flood	\$1,070,000,000	\$990,000,000	7%
Damages			

(1) Gage Correlation

To evaluate the likelihood of coincident flood events, a gage correlation assessment was conducted. The methodology presented by Kim et al. 2022 [reference 3] was partially utilized, which involves assessing the correlation between high rainfall and coastal stage using Kendall's Tau to compute the "strength of dependence" between the two variables.

For this analysis, two data sets were assembled: one comprising historic flows at Port Vincent with the concurrent stages at Pass Manchac, and the other comprising historic stages at Pass Manchac with the concurrent flows at Port Vincent. Kendall's Tau values range from -1 (indicating a strong negative correlation) to 1 (indicating a strong positive correlation), with a zero-value suggesting no correlation.

The computed Tau value between peak flows at Port Vincent and stages at Pass Manchac is -0.143 (n = 14), while the Tau value between peak stages at Pass Manchac

and flows at Port Vincent is 0.059 (n = 18). These findings are summarized in Tables H-4 and H-5. Events associated with tropical storms are indicated with initials "TS" (Tropical Storm), while those not associated with tropical storms are marked as "NTS" (No Tropical Storm).

Neither of the Tau values was high enough to reject a hypothesis test that Tau is equal to zero at a confidence level exceeding 60%, according to significance tables provided by real-statistics.com [reference 4]. This indicates that, based on these gage records, there is no strong correlation between the annual maximum flow rate at the Port Vincent gage and the stage at Pass Manchac, nor is there a strong correlation between the annual maximum stage at Pass Manchac and the flow rate at Port Vincent.

Following the initial steps of Kim et al. (2022), Kendall's correlation test was also performed on the dataset comparing peak Manchac stages with Port Vincent flows, testing the events associated with TS and NTS separately. Both tests yielded Tau values of 0.29, which were not statistically significant for the sample sizes of 10 and 8, respectively.

Table H-4 Port Vincent peak flows Kendall's Correlation with Pass Manchac stages

		Manchac			
Date	PV Flow (cfs)	Stage (ft)	Tropical Storm	n	14
8/15/2016	199000	1.3	NTS	C(n,2)	91
1/28/1990	69500	0.73	NTS	D	52
1/23/1993	48400	1.79	NTS	С	39
4/30/1997	45300	1.08	NTS	tau	-0.14286
4/13/1995	44700	1.92	NTS		
3/8/1992	43100	1.05	NTS		
11/1/1985	42200	3.62	TS		
2/24/2003	42100	0.95	NTS		
3/14/2016	41700	2.59	NTS		
4/4/1988	38300	2.29	NTS		
1/13/2013	35200	2.05	NTS		
3/17/1999	33900	0.72	NTS		
2/28/1997	31800	1.33	NTS		
5/18/2004	31400	2.09	NTS		

Table H-5 Pass Manchac peak stages with Port Vincent flows

Date	Manchac Stage (ft)	PV Flow (cfs)	Tropical Storm
8/30/2012	6.54	14600	TS
8/30/2021	6.11	7650	TS
10/11/2004	4.85	8350	TS
9/4/2011	4.28	9250	TS
9/22/2020	4.04	-121	TS
10/26/2015	3.86	12800	NTS
10/10/2018	3.58	215	TS
7/13/2019	3.33	117	TS
10/8/2017	3.29	523	TS
4/18/2016	3.28	2150	NTS
2/2/2005	3.24	9770	NTS
7/1/2003	3.1	3890	TS
12/13/2009	2.72	9410	NTS
4/13/2023	2.54	3080	NTS
7/7/2010	2.54	1410	TS
11/26/2013	2.49	1320	NTS
12/20/2022	2.3	6930	NTS
5/31/2014	2.23	8990	NTS

n	18
C(n,2)	153
D	72
С	81
tau	0.058824

(2) Gage Lag Times

Table H-6 presents the lag time between peak stages at the Port Vincent and French Settlement gages in the lower Amite Basin and the peak stage at Pass Manchac during historical tropical storm events. Given the duration of the observed stage hydrographs (see Annex H-3), it is likely that high downstream tailwaters influence flood levels further upstream.

The two highest recorded stages at the Port Vincent gage during tropical events occurred during Hurricane Gustav (9.72 feet on September 6, 2008) and Hurricane Hilda (9.22 feet on October 8, 1964). Unfortunately, there are no corresponding stage measurements at Pass Manchac for these events. However, since both storms dissipated several days prior to the peak stage at Port Vincent—on September 4, 2008, and October 4, 1964, respectively—it is likely that there was a significant lag between the peak storm surge at Pass Manchac and the rainfall-induced peak at Port Vincent.

The third highest measured stage at Port Vincent coincided with Hurricane Isaac, and Table H-6 indicates a lag of 2.9 days between the peak at Pass Manchac and the peak

at Port Vincent. In contrast, the time lag between the peak stages at French Settlement and Pass Manchac during the same event was only 0.6 days.

One possible explanation for the difference in time lags is that the high WSE at French Settlement's was primarily driven by storm surge, given its proximity to Lake Maurepas, whereas the high WSE at Port Vincent was largely the result of rainfall runoff.

Table H-6 Peak Stage Lag Time Analysis for Storm Events Affecting Pass Manchac

Event	Year	Pass Manchac Peak Stage (ft)	Port Vincent Lag Time, Peak Stage (days, ft)	French Settlement Lag Time, Peak Stage (days)
Hurricane Ida	2021	6.11	0.7, 6.6	0.6, 5.9
Hurricane Isaac	2012	6.54	2.9, 8.92	0.6, 6.87
Tropical Storm Lee	2011	4.28	1.0, 6.13	0.7, 5.15
Tropical Storm Beta	2020	4.04	0.7, 4.98	0.7, 4.45

The PDT made a risk-informed decision to not conduct the full compound flood analysis as outlined in Kim et al. (2022) and EM 1110-2-1415. The preceding section demonstrates the initial steps of the analysis, following Kim et al. (2022), but fails to establish a statistically significant correlation as achieved in that study. This is likely due to the smaller sample size available for the Amite Basin compared to the dataset utilized in the Kim et al. paper.

While the lower Amite Basin is susceptible to hypothetical compound flooding, conducting a comprehensive compound flood analysis would involve high levels of uncertainty due to the limited data. This scarcity of data makes it challenging to quantify the dependence relationship necessary for accurately estimating design events that account for compound flooding.

Furthermore, as shown in Table H-3, the calculated damages are not highly sensitive to the level of dependence, with full dependence scenarios showing only a 12% increase in damages. This finding suggests that the potential impact of compound flooding on the overall risk assessment is relatively low, justifying the PDT's decision to forego the full analysis.

5.0 RESULTS

Hydraulic model production runs were conducted for six recurrence interval events, both 96-hour rainfall and coastal surge events. The modeled annual exceedance probability (AEP) events were the 0.1, 0.04, 0.02, 0.01, 0.005, and 0.002 events, corresponding to 10-year, 25-year, 50-year, 100-year, 200-year, and 500-year events, respectively. These models were run under baseline conditions (2026) and future without-project conditions (2076), with adjustments to impervious surface percentages and downstream boundary conditions changed to distinguish between the baseline and future years.

The model runs generated WSE grids. Corresponding rainfall and coastal grids for each AEP event were combined using ArcGIS Pro to create WSE grids that used the higher of the two events at every point, representing the predominant condition. This process was completed for both the 2026 and 2076 model outputs, resulting in the creation of 36 WSE raster files in .tif format. These WSE raster files are aligned with the USA Contiguous Albers Equal Area Conic USGS projection.

To ensure accuracy, the MVN Geospatial Team conducted quality checks (QC) on the production run outputs by conducting raster difference calculations on subsets of the model results. These calculations compared WSE values at every location to verify that increasing event intensity, as well as comparisons between baseline and future condition modeling of the same event intensity, exhibited consistent upward trends. The quality check identified and corrected modeling errors in the final set of results.

The quality-checked model results were then provided to the economics team for use in calculating damages and benefits. Additionally, the WSE outputs were also utilized to calculate depth grids, which the economic team employed in their life-safety analysis, detailed in Appendix G, Section 7.2.2. Annex H-1 includes maps showing the maximum WSE results for the three different conditions: Rainfall, Coastal, and Predominant.

To summarize the model results, the peak WSE for each frequency event is plotted below at the four Amite River stream-gauge sites, as illustrated in Figure H-26.

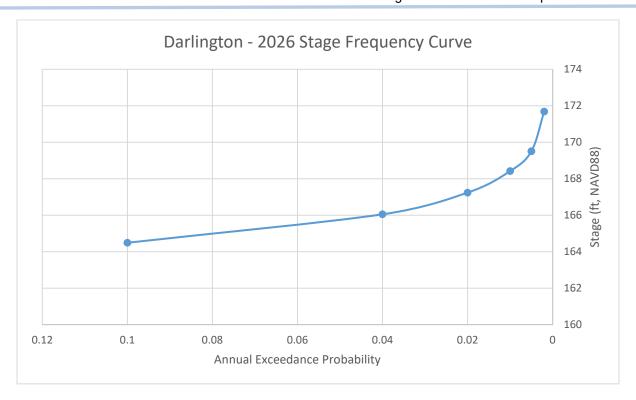


Figure H- 34 Darlington Stage Frequency Curve 2026

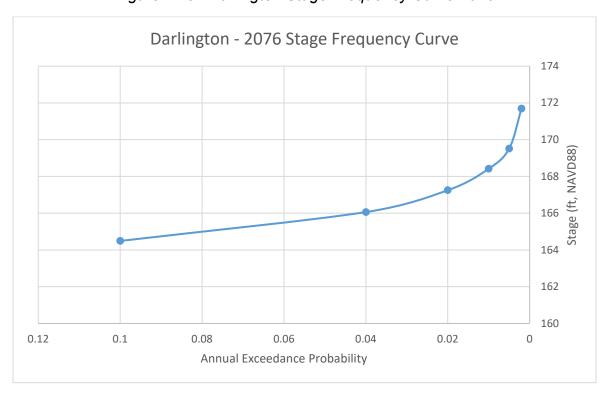


Figure H- 35 Darlington Stage Frequency Curve 2076

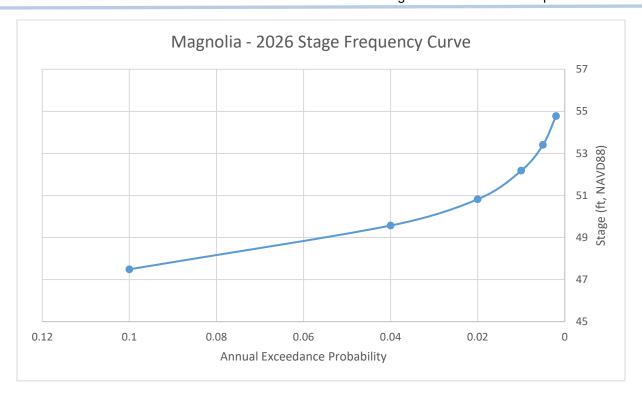


Figure H- 36 Magnolia Stage Frequency Curve 2026

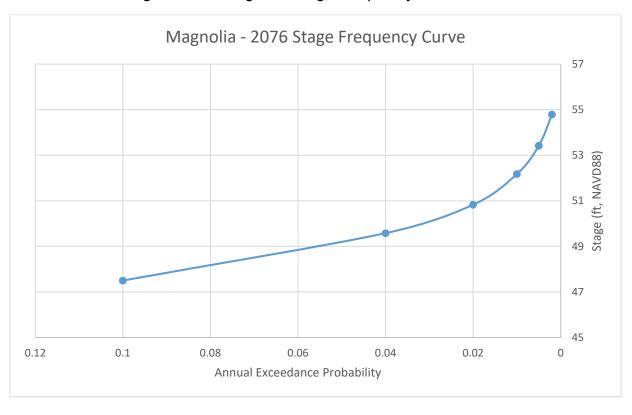


Figure H- 37 Magnolia Stage Frequency Curve 2076

45

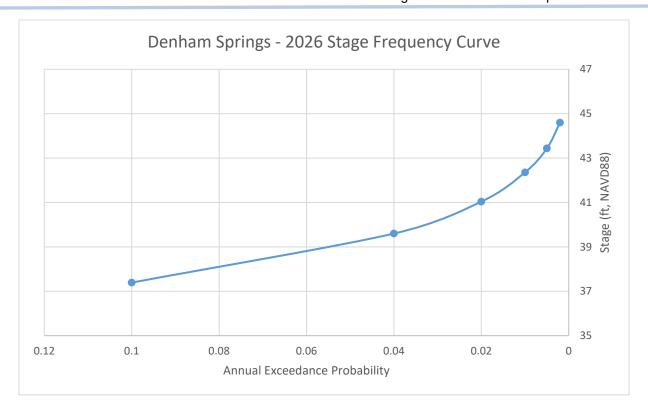


Figure H- 38 Denham Springs Stage Frequency Curve 2026

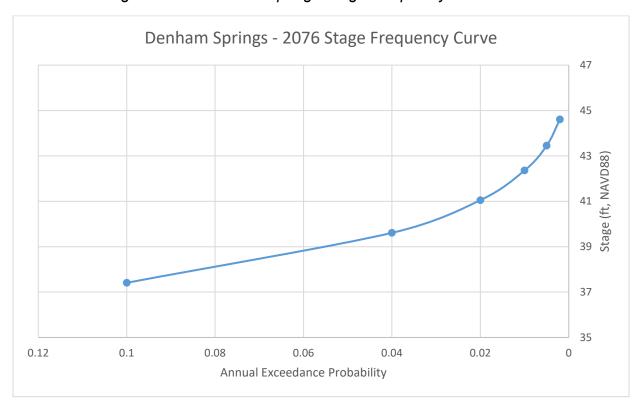


Figure H- 39 Denham Springs Stage Frequency Curve 2076

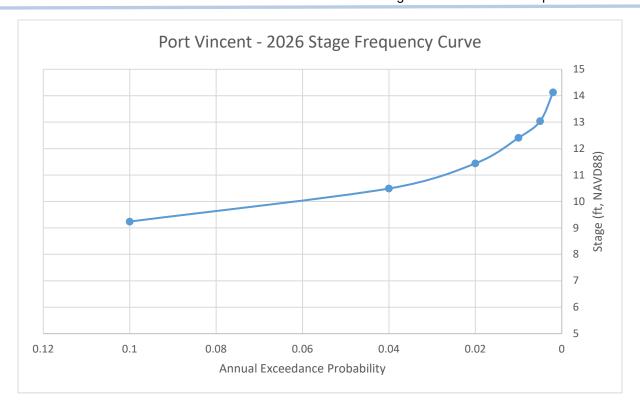


Figure H- 40 Port Vincent Stage Frequency Curve 2026

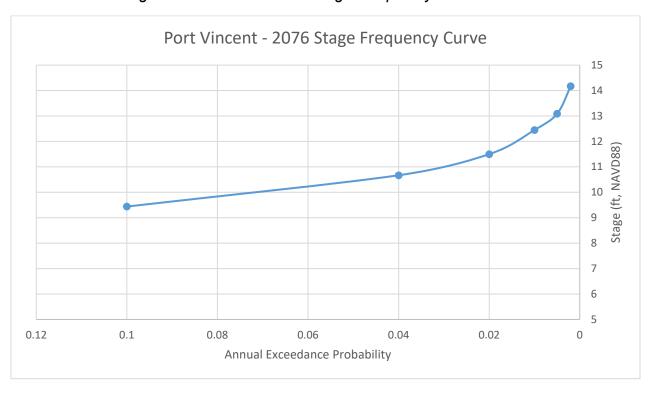


Figure H- 41 Port Vincent Stage Frequency Curve 2076

6.0 CHANGE CONDITION ASSESSMENT

6.1 Change Condition Assessment: Hydrology Non-Stationarity

To assess the potential impacts of changes in hydrology on future project performance, the USACE Non-Stationarity Detection Tool was utilized. This analysis followed the procedures outlined in the U.S. Army Corps of Engineers Non-Stationarity Detection Tool User Guide, specifically in Section 3.4, titled "Monotonic Trend Analysis." The non-stationarity tests and monotonic trend analysis were conducted on the annual peak flow values at two key locations along the Amite River: the most upstream gage at Darlington and the most downstream gage at Port Vincent.

A more comprehensive non-stationarity analysis was conducted by Dewberry [reference 1], which included both streamflow and precipitation non-stationarity evaluations. Statistically significant increasing trends were identified for precipitation at some gages, as well as for peak flows on the Comite River, although no significant trends were found for the Amite River. At the time of this analysis, the application of non-stationarity analysis to the numerical cost-benefit analysis results was not deemed certain enough to be incorporated. Consequently, both the USACE and Dewberry non-stationarity analyses serve as indicators of potential future risk and could inform future updates to the numerical cost-benefit analysis if necessary.

Darlington

The non-stationarity tool identified a non-stationarity point in 1984 at the Darlington Gage (Figure H-42). As a result, the trend analysis was conducted using data from 1985 to 2021. The analysis showed no statistically significant trend in annual peak streamflow (Figure H-43).

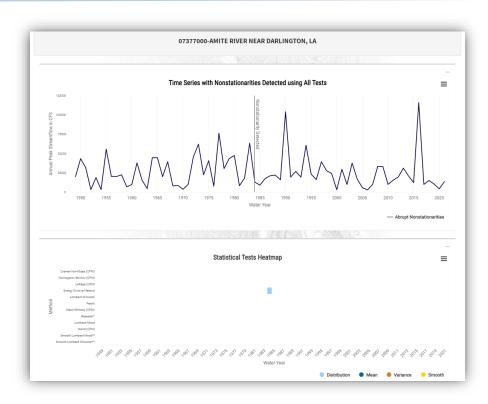


Figure H-42 Darlington Gage Non-Stationarity

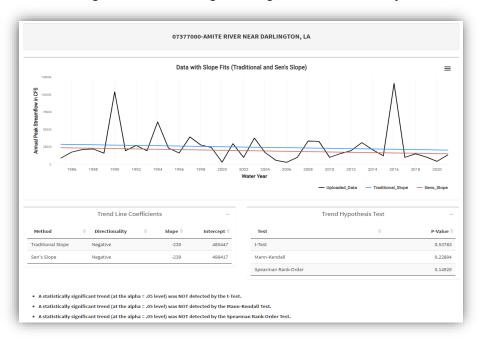


Figure H-43 Darlington Gage Trend Test

Port Vincent

The non-stationarity tool detected a non-stationarity at the year 1999 at the Port Vincent Gage (Figure H-44). Therefore, the years used in the trend analysis are 2000 to 2021.

The trend analysis showed no statistically significant trend in annual peak streamflow (Figure H-45).

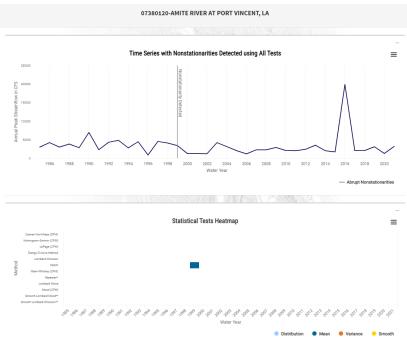
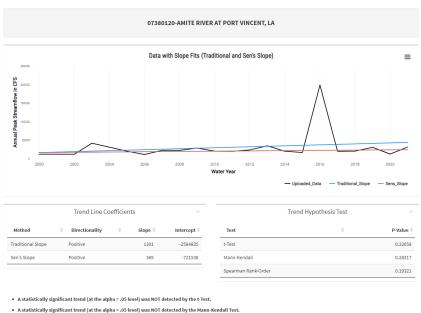



Figure H- 44 Port Vincent Gage Non-Stationarity

[•] A statistically significant trend (at the alpha = .05 level) was NOT detected by the Mann-Kendall Test.

Figure H-45 Port Vincent Gage Trend Test

[•] A statistically significant trend (at the alpha = .05 level) was NOT detected by the Spearman Rank-Order Test.

The results of the non-stationarity and trend analyses suggest that there have been changes in hydrology over the past 30 years. This period aligns with increased residential and commercial development within the Amite basin, making it challenging to isolate the primary drivers behind the observed trends. While urban development likely contributes to the increase in peak flows, the Dewberry report also identified increasing trends in precipitation at some stations.

These trends could be incorporated into the cost-benefit analysis by using updated NOAA Atlas 14 estimates, which are expected in upcoming years, or by using global climate models, which USACE recently released guidance on how to incorporate.

6.2 Change Condition Assessment: Climate Hydrology Assessment Tool

The Climate Hydrology Assessment Tool (CHAT) was used to estimate projected changes in the annual-maximum of mean monthly streamflow (AMMMS) and 1-day precipitation for two representative concentration pathways (RCPs): 4.5 W/m² and 8.5 W/m². The analysis focused on two Amite River stream segments: 08001284 (adjacent to Baton Rouge) and 08000705 (the furthest downstream). This assessment was conducted in accordance with the guidelines set forth in ECB 2018-14.

The CHAT results indicated no statistically significant trend in the AMMMS at either stream segment under the 4.5 RCP scenario. However, for the 8.5 RCP scenario, the tool projected statistically significant downward trends in the AMMMS. Figures H-46 and H-47 illustrate these findings.

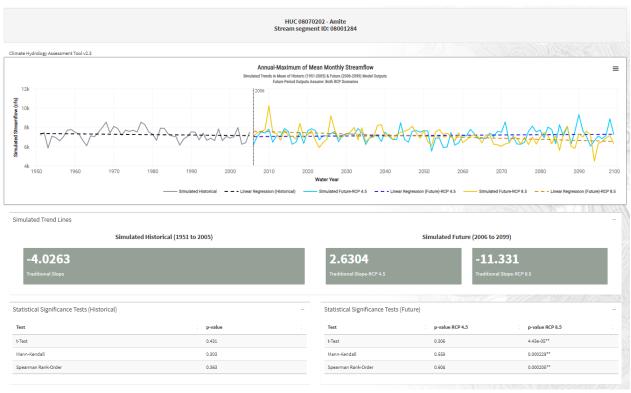


Figure H-46 Annual-maximum of mean monthly streamflow trends for stream segment 08001284 (adjacent to Baton Rouge)

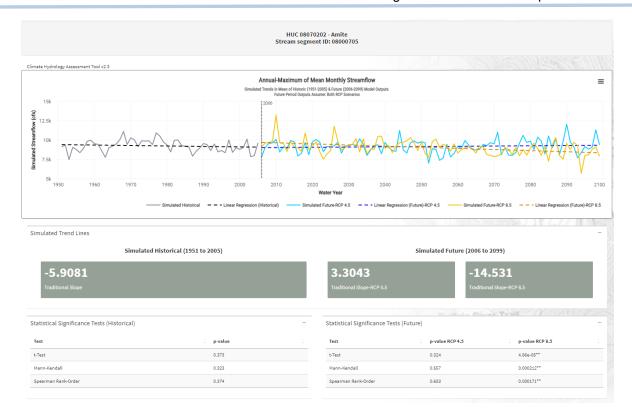


Figure H-47 Annual-maximum of mean monthly streamflow trends for stream segment 08000705 (furthest downstream)

The CHAT tool predicted statistically significant increases in 1-day annual maximum precipitation depths under the 4.5 W/m² RCP scenario, but no statistically significant trend was observed under the 8.5 W/m² RCP scenario (see Figure H-48). This trend was consistent across both stream segments analyzed.

The CHAT tool estimated approximately a 4% increase in precipitation between 2026 and 2076. However, this estimate is considered qualitative and should not be used to make quantitative engineering judgements, as per ECB 2018-14. A 4% increase in precipitation could translate to an additional 0.45 to 0.92 inches of rainfall across the range of design storms. A sensitivity test conducted for the 2076 100-year event with a 4% increase in rainfall totals indicated up to two feet of additional flooding.

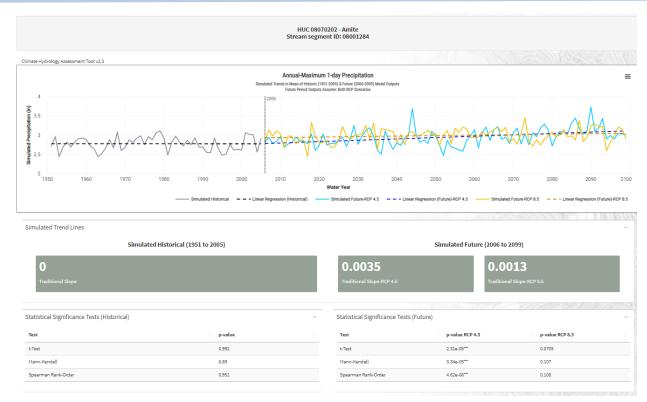


Figure H-48 CHAT-predicted precipitation trends in the Amite Basin

6.3 Change Condition Assessment: Sea Level Change Analysis

Future relative sea level change (RSLC) is expected to impact the project area due to the project area's proximity to the coastline. Rising sea levels will reduce the hydraulic gradient, slowing storm runoff drainage and increasing flooding levels from the same amount of rainfall. Additionally, SLC will elevate storm surge levels.

SLC was estimated using the USACE Sea-Level Calculator for Non-NOAA Long-Term Tide Gauges (Version 2020.88). This tool was designed for coastal Louisiana and accounts for the high rates of land subsidence. The procedure for estimating SLC using historic tide gage data is outlined in ER 1100-2-8162 (2019), with ECB 2013-27 (2013) providing guidance on using non-NOAA gages for such estimates—necessary for this project due to the absence of NOAA gages near the project area.

SLC was estimated using the Lake Pontchartrain at Frenier gage record (USACE gage 85550). Between 2018 and the project baseline year (2026), the low, intermediate, and high estimates of sea level change are 0.2 ft, 0.2 ft, and 0.4 ft, respectively. Between the

project baseline year (2026) and the 50-year project life (2076), the low, intermediate, and high estimates of sea level change are 1.37 ft, 1.90 ft, and 3.56 ft, respectively. The AR&T Project Delivery Team (PDT) selected the intermediate rate of SLC for future conditions model runs. This decision was based on the uncertainty surrounding which curve SLC will follow, with the intermediate option deemed the most reasonable choice for calculating the most likely future water surface elevations.

This decision is supported by a comparison of the gage at the New Canal Station (8761927) with USACE sea level change projections. While the 40-year record trend at this gage is lower than the low sea level change projection, and that the 19-year moving average for the mean-high-high-water level is tracking below the intermediated curve, the USACE Sea Level Tracker tool indicates that the 19-year moving average for mean sea level has exceeded the high SLC projection curves over the past decade. Given this variability, the intermediate curve was selected to calculate the floodplain for the TSP.

The boundary conditions section (4.2.4) details how these curves were incorporated into the modeling effort. Figure H-49 illustrates the estimates of SLC for Lake Pontchartrain at Frenier. Although the Frenier gage is referenced to the NGVD29 vertical datum (while all the other sea level data and model stage boundaries are referenced to the NAVD88), the sea level curves calculated at the Frenier Gage are valid for this analysis as they provide a reliable estimate of change in sea level over time. This gage is the closest to the model boundary at the west shoreline of Lake Maurepas, and both the Frenier and New Canal gages are close enough to approximate SLC at the model boundary. Since they are closer to the open ocean than the model boundary, these gages likely overestimate RSLC's impact on the project area. The locations of these gages relative to the model boundary are shown in Figure H-50.

USACE Curves computed using criteria in USACE EC 1165-2-212 USACE Curves computed using criteria in USACE EC 1165-2-212

Gauge 85550: Lake Pontchartrain at Frenier: Jan 1950 to Dec 2002 All values are in feet		Gauge 85550: Lake Pontchartrain at Frenier: Jan 1950 to Dec 2002 All values are in feet					
Year	USACE Low	USACE Int	USACE High	Year	USACE Low	USACE Int	USACE High
				2026	0.94	1.04	1.37
2018	0.7	0.8	1.0	2031	1.07	1.21	1.64
2019	0.7	0.8	1.0	2036	1.21	1.38	1.93
2020	0.8	0.8	1.1	2041	1.35	1.56	2.24
2021	0.8	0.9	1.1	2046	1.49	1.75	2.57
2022	0.8	0.9	1.2	2051	1.63	1.94	2.92
				2056	1.76	2.13	3.28
2023	0.9	0.9	1.2	2061	1.90	2.32	3.67
2024	0.9	1.0	1.3	2066	2.04	2.53	4.07
2025	0.9	1.0	1.3	2071	2.18	2.73	4.49
2026	0.9	1.0	1.4	2076	2.31	2.94	4.93

Figure H-49 Estimated Sea Level Change from Sea-Level Calculator for Lake Pontchartrain at Frenier

The 2022 Updated Atlas of U.S. Army Corps of Engineers Historic Daily Tide Data in Coastal Louisiana revised the observed rate of relative sea level change at the Frenier gage from 8.4 mm/year to 8.84 mm/year. The intermediate curve used in the modeling is calculated using the rate from the previous version of the Atlas (8.4 mm/year) combined with projections from the National Research Council (NRC). The 0.44 mm/year difference is not expected to significantly alter the modeling analysis, as it amounts to an additional 22 mm, or 0.87 inches, of RSLC over a 50-year period.

Sensitivity analysis results from model runs for the 2076 100-year events with high SLC added at the downstream boundary are shown in Annex H-4. These results will be transmitted to the economics team to quantify residual flood risk in PED. According to EP 1100-2-1 (Procedures to Evaluate Sea Level Change), PDTs are required to estimate a "future affected area" by estimating the floodplain for 100 years from the baseline year using the high sea level change curve. The guidance states that if the level of risk is shown to be high, later stages of the study may need to improve the quality or quantity of data to better capture the risks associated with project area vulnerability. Annex H-4 also shows the floodplain for the 2126 .01 AEP predominant event.

ER 1100-2-8162 requires planning studies to evaluate all three rates of RSLC. The low SLC rate was deemed inconsequential for further analysis, as the TSP is fully non-structural and does not include structural elements that might be sensitive to lower WSEs.

The Sea Level Analysis Tool (SLAT) was used to evaluate the sensitivity of the coastal section of the project area to high SLC. The coastal section of the project area was determined using GIS processes and defined as areas where the coastal surge model runs for the 2076 100-year annual exceedance probability (AEP) event showed higher WSE than for the rainfall-only model runs. This coastal-surge dominant area was confirmed to be consistent across different AEP events, including the 2076 500-year AEP event. The coastal section encompasses 27 economic subunits.

For each subunit, the mean land surface elevation for developed land and all land-use types was plotted against the mean-high-high-water elevation under the three RSLC scenarios at the NOAA New Canal tide gage, as shown in Figure H-50. Additionally, the mean roadway elevation for each subunit was calculated using an inventory of state and federal highways and plotted as well. These plots, along with the subunit locations, are shown in Annex H-5. They provide insights into which critical infrastructure may be most susceptible to the high RSLC scenario, highlighting the potential for flooding from tides alone.

Although the rate of sea level change may impact the floodproofing and home-raising elevations to mitigate flood risk, it is unlikely to impact the recommended plan (RP) selection. This is due to the limitations of other alternatives considered, such as the Darlington Dam, which would not mitigate the coastal flood risk that is most sensitive to RSLC. While the non-structural plan formulation may be sensitive to the RSLC rate, the analysis conducted during PED will allow for refinement floodproofing and home-raising elevations later in the process.

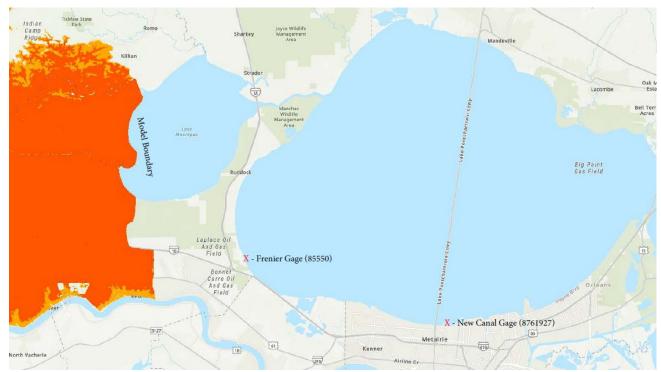


Figure H- 50 Location of SLC Gages Relative to Model Boundary

Another approach to assess the sensitivity of the recommended plan to RSLR rates is by comparing the total intermediate RSLC over the project lifespan to the high RSLC rate. This comparison helps identify when the high RSLC rate will surpass the total intermediate RSLC. As shown in Figure H-51, this crossover occurs in the year 2050 at the New Canal Station gauge. This indicates that the residual risk to project performance due to RSLC increases significantly beyond 2050.

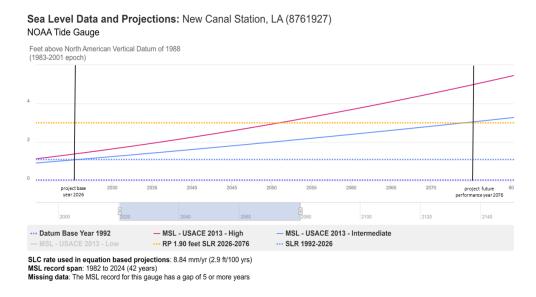


Figure H- 51 Comparison of Total Intermediate RSLC to High RSLC Curve

6.4 Change Condition Assessment: Literature Review

6.4.1 USACE Change Condition Literature Review

The USACE Institute for Water Resources conducted a literature synthesis on meteorologic and hydrologic trends in each region of the United States. The report for the Lower Mississippi River (LMR) Region 08, which encompasses the Amite River and Tributaries project, provides a detailed analysis of six variables: mean temperature, minimum temperature, maximum temperature, average precipitation, extreme precipitation events, and mean stream flows. The findings of the report are summarized below:

(1) Temperature

The report found no studies on observed temperature trends specific to the LMR region. Instead, nationwide studies were referenced, one of which (Westby et al., 2013) indicated a slight cooling trend in mean temperatures for Region 08. Other studies suggested that more recent observed data may have a slight increasing trend in mean temperature (Liu et al. 2012). Additionally, one study noted increasing trends in one-day extreme minimum temperatures, while one-day extreme maximum temperatures showed no significant trend (Grundstein and Dowd, 2011). Overall, observed temperature trends in Region 08 are not strong, but there is a strong consensus in the literature that projected temperatures will rise in the next century. The report focused on studies that incorporated global climate models (GCMs) to estimate future temperature trends.

(2) Precipitation

For observed precipitation trends, one study found significant increases in winter and fall precipitation, along with decreases in spring and summer precipitation (Palecki et al., 2005). Other studies observed overall increases in annual precipitation and soil moisture measurements (Grundstein, 2009). The frequency of the 20-year rainfall event has also increased according to some studies (Wang and Zhang, 2008). However, trends in heavy rainfall frequency were mixed, with some stations in Region 08 showing statistically significant increases, while others did not (Villarini et al., 2013). Trends in droughts frequency showed a decrease (Chen et al., 2012). Overall, the observed record shows slight precipitation increases, though the consensus is not strong. Future precipitation was estimated in many studies using GCMs. There was generally low consensus between studies on future precipitation patterns. One study concluded that there would be dryer summers in future years, whereas another projected significant springtime increases in precipitation (Liu et al., 2011).

(3) Streamflow

Several studies have looked at observed streamflow trends, distinguishing between Mississippi River and its smaller tributary trends within the region. Although Mississippi

River streamflows are largely influenced by inflows from other regions further upstream regions, most studies detected increasing trends in streamflow for both the MS River and smaller rivers such as the Amite. Future streamflow projections, based on GCMs combined with macro-hydrologic models, varied significantly. One study compared two GCMs, combined with one hydrologic model, and found that the two GCMs produced opposite results, with one increasing water yield, and the other decreasing water yield, for the same set of inputs (Thomson et atl., 2005). Another study concluded that the uncertainty associated with the hydrologic models was as great or greater than the GCMs (Hagemann et al., 2013). Most studies, however, indicate a decreasing trend in streamflows for Region 08.

6.4.2 4th National Climate Assessment

The 4th National Climate Assessment (NCA) provides an extensive overview of regional meteorologic and hydrologic trends, specifically focusing on the Southeast region, which includes the Amite River and Tributaries project area. The report analyzes historical and projected future trends for various meteorologic and hydrologic variables, including maximum temperatures, extreme precipitation, and other variables.

Under the representative concentration pathway (RCP) 8.5, the NCA projects significant increases in both daytime maximum and nighttime minimum temperatures in the Southeast. The report also highlights the observed and projected increase in coastal flooding due to sea level change, noting that annual occurrences of high tide coastal flooding have increased 5- to 10-fold since the 1960s. The NCA estimates that global sea level is "very likely to rise by 0.5 to 1.2 feet by 2050." Additionally, the NCA expresses high confidence in the increased frequency and intensity of extreme rainfall events, citing the August 2016 Baton Rouge floods as an example of the impacts of such events. The March 2016 flooding in northern Louisiana is also mentioned as another significant event. Overall, the NCA's findings align with those of the USACE regional literature reviews, often providing more details on real world examples and impacts.

6.4.3 Other Change Condition Literature Relating to the Amite River Basin

Colten et al. (2021): This study focuses on post-2016 efforts to improve flood drainage in the Amite River Basin, particularly the impact on downstream communities from the growing urban area around Baton Rouge.

Johnson et al. (2015): This study uses SWAT modeling combined with regional climate models to forecast meteorological inputs, including total precipitation, precipitation above/below the 70th percentile, air temperature, relative humidity, surface downwelling shortwave radiation, and wind speed. The study concludes that while temperatures in the Amite Basin will rise, there is less certainty regarding trends in precipitation and total

streamflow. However, it does estimate that peak streamflows will increase, and minimum streamflows will decrease in future scenarios.

Cowles (2021): This study investigates the sensitivity of the Dewberry HMS and RAS models to changes in imperviousness, which is expected to increase in the future. The study concludes that the AR&T Basin is not particularly sensitive to changes in impervious area.

6.5 Change Condition Assessment: Vulnerability

The USACE's mission of flood risk management in the Amite River Basin was assessed for vulnerability using the USACE's Screening-Level Climate Change Vulnerability Assessment Tool at the Watershed Scale. For the Lower Mississippi-Lake Maurepas watershed (hydrologic unit code-4 (HUC-4) watershed 0807), which includes the Amite River basin, no vulnerability to Flood Risk Reduction was found. The only vulnerability identified was for the Recreation business line under the Dry – 2085 scenario & Epoch, as illustrated in Figure H-51.

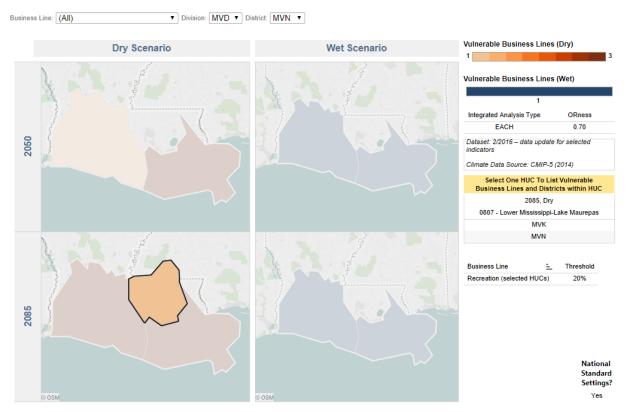


Figure H-52 Scenario Comparison Over Time map for MVN. The only vulnerability shown for HUC-4 watershed 0807 is for recreation.

6.6 Change Condition Risk Table

A change condition risk table is shown below. This table qualitatively summarizes the remaining risks due to potential change condition impacts.

Table H-7 Change Condition Risks from Precipitation, Flood Frequency, and Sea Level

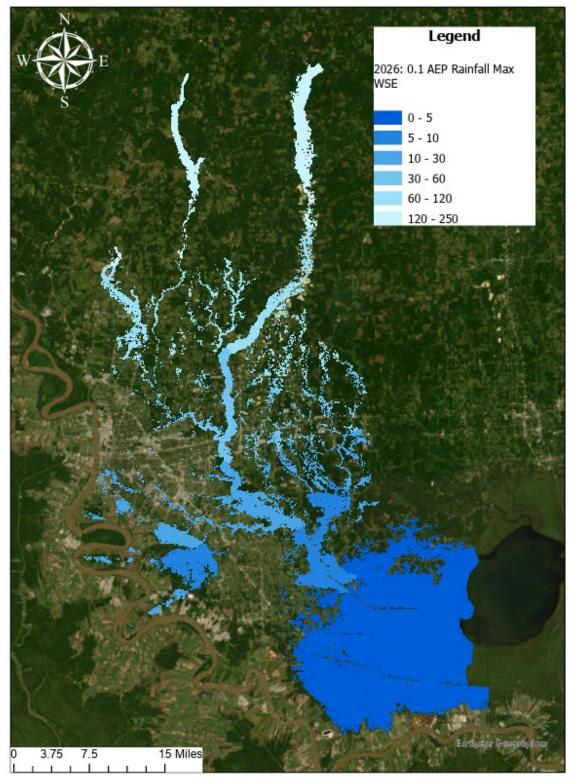
Feature	Trigger	Hazard	Harm	Qualitative
				Likelihood
Individual	Increased	Future flood	The larger and more	Somewhat
Home	precipitation	volumes may	frequent flood volumes	likely [1]
Floodproofing/	intensity and	be larger than	could put more strain	
Elevations	frequency	present.	on floodproofing	
		Larger flood	measures and	
		volumes may	overwhelm them if	
		occur more	large enough	
		frequently		
Individual	Increased	Future flood	The larger and more	Somewhat
Home	streamflows	volumes may	frequent flood volumes	likely [1]
Floodproofing/		be larger than	could put more strain	
Elevations		present.	on floodproofing	
		Larger flood	measures and	
		volumes may	overwhelm them if	
		occur more	large enough	
		frequently		
Individual	Increased	Future flood	More frequent storm	Somewhat
Home	frequency of	volumes may	surges could strain or	likely [1]
Floodproofing/	storm surge	be larger than	overwhelm flood	
Elevations		present.	proofing measures.	
		Larger flood	Saltier flood waters	
		volumes may	could be corrosive to	
		occur more	homes/elevation	
		frequently	structures.	

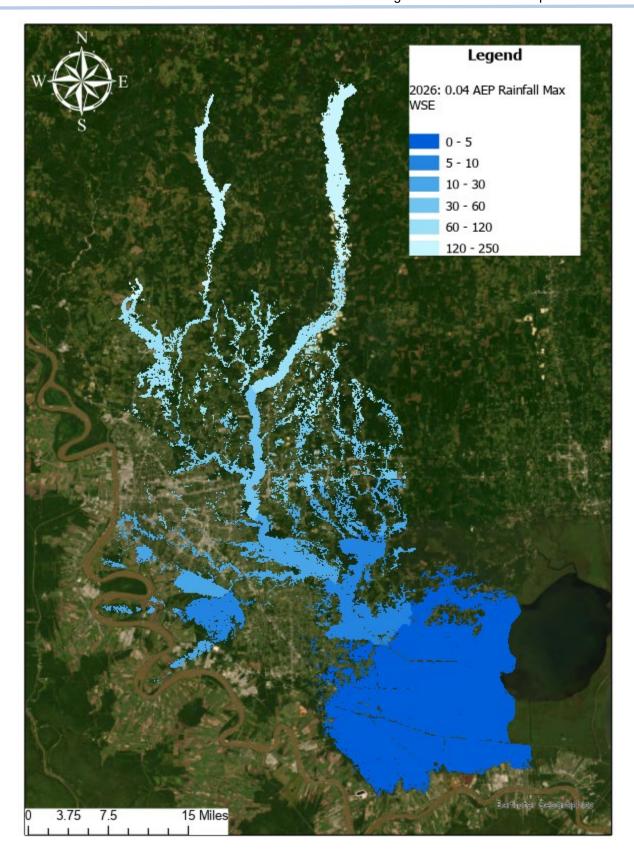
Individual	Higher storm	Future flood	More frequent storm	Somewhat
Home	surge levels	volumes may	surges could strain or	likely [1]
Floodproofing/	due to SLC	be larger than	overwhelm flood	
Elevations		present.	proofing measures.	
		Larger flood	Saltier flood waters	
		volumes may	could be corrosive to	
		occur more	homes/elevation	
		frequently	structures.	

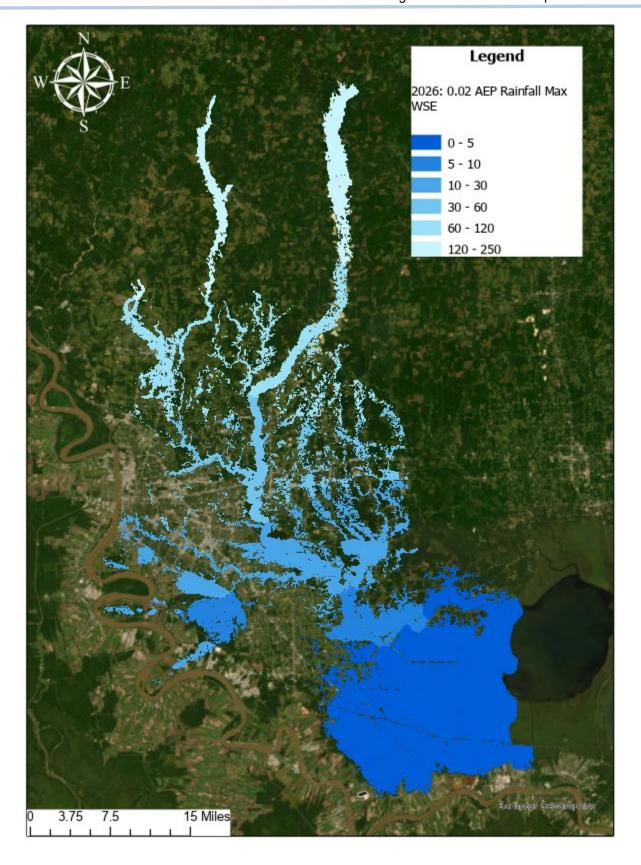
As the project RP is a non-structural only plan, the change condition risks are limited to impacts relating to increased flooding frequency and volumes on individual home floodproofing measures. The qualitative likelihood of each trigger is based on the non-stationarity/trend analysis conducted by Dewberry [reference 1], which suggested increases in all listed triggers. In addition to larger flood frequency and volumes on the individual homes, corrosive impacts from higher salinity storm surge waters should be considered for future risks.

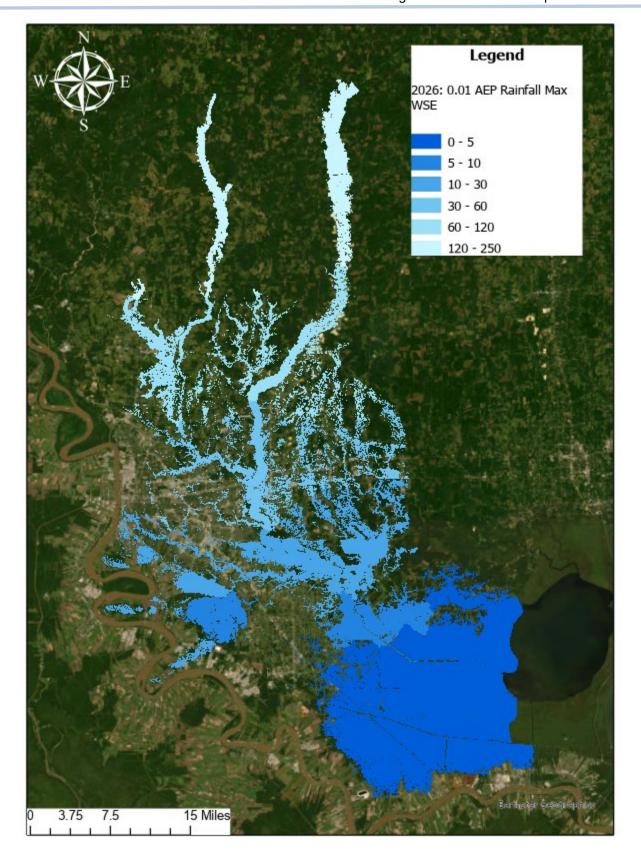
7.0 Risk and Uncertainty

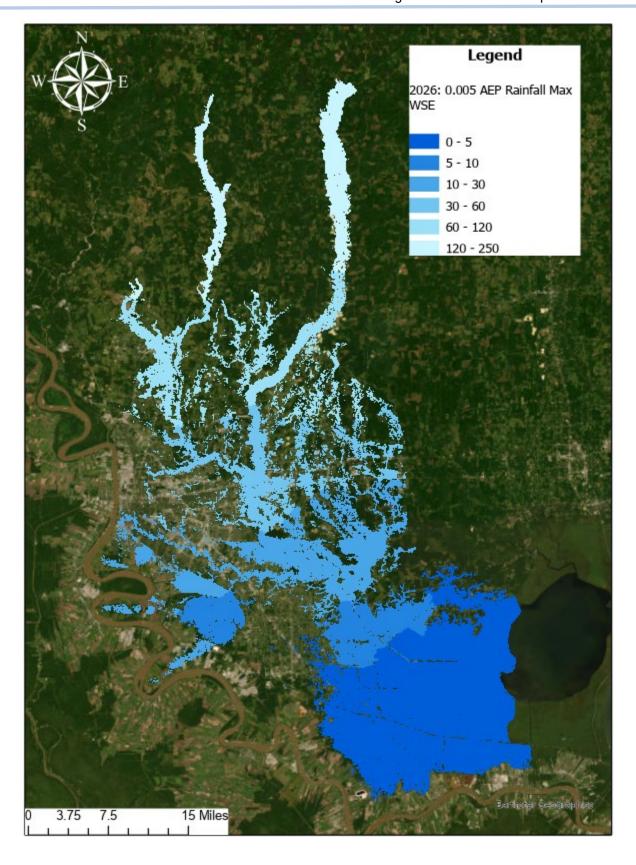
Risk and uncertainty due to project assumption are discussed throughout appendix. These include concerns about the accuracy of survey and land cover data, uncertainty in the rainfall intensity and spatial distribution, and uncertainty in estimating future relative sea level change. Beyond the risks summarized throughout the report, additional uncertainty in the model results may stem from various other factors. The Dewberry report [reference 1] highlights the uncertainty introduced during the model calibration process. Since only a handful of extreme scenarios are used for the calibration process, there is a risk of over-fitting the model parameters to the calibration process. Furthermore, the flow measurements at the USGS stream-gauges, which are used to calibrate the models, also involve a degree of measurement uncertainty. Other sources of uncertainty include numerical errors and the simplifications of the governing equations that represent hydraulic routing. Despite these hydrologic and hydraulic uncertainties, they were deemed acceptable for determining the recommended plan.

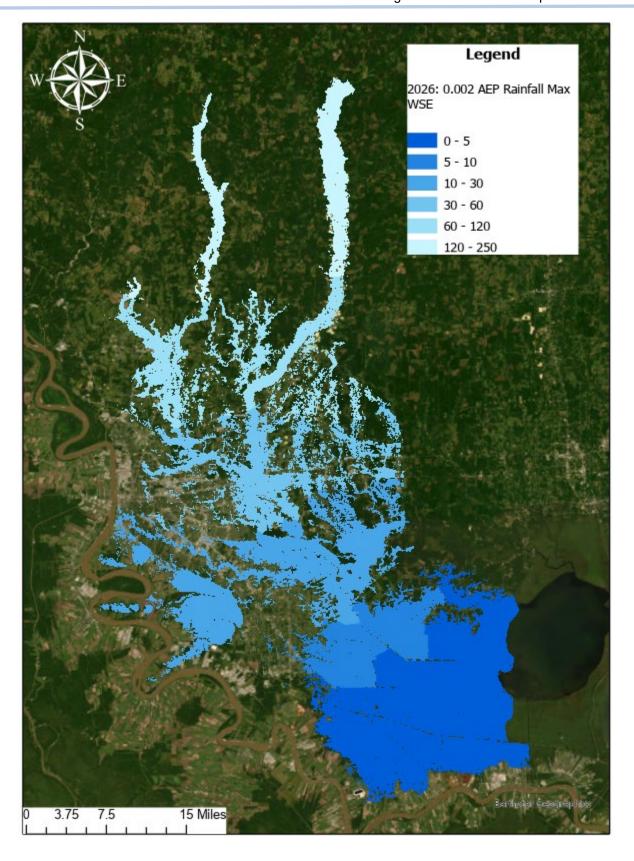

8.0 REFERENCES

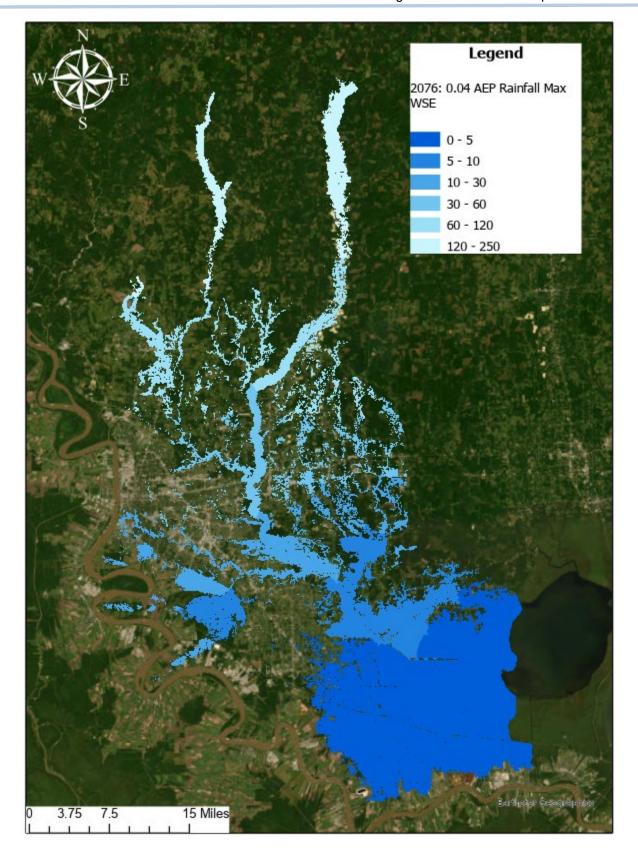

- 1. Dewberry Engineers Inc., Louisiana Department of Transportation and Development, *Amite River Basin Numerical Model*, 2019
- 2. USACE-MVN, West Shore Lake Pontchartrain Surge Hazard and Design Assessment, 2022

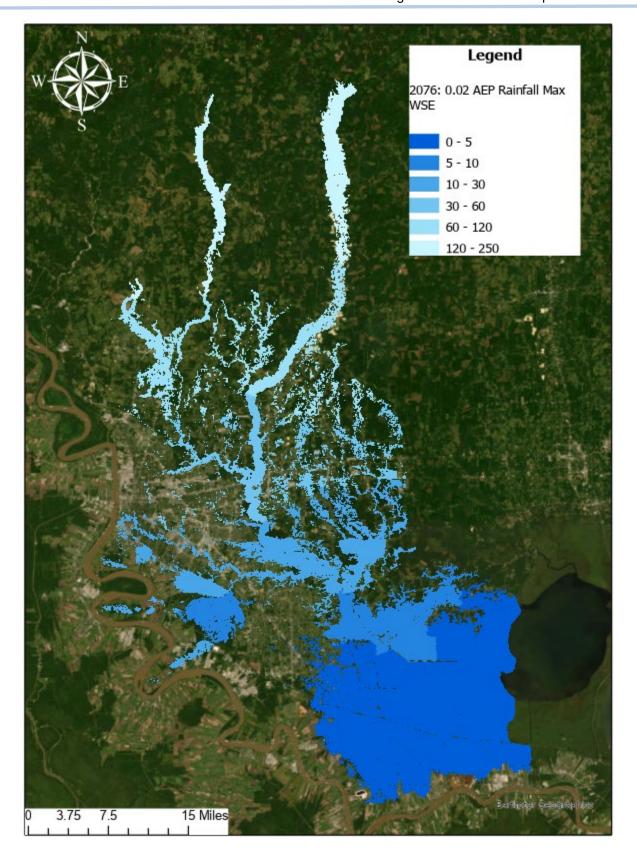

- 3. Kim et al., On the generation of high-resolution probabilistic design events capturing the joint occurrence of rainfall and storm surge in coastal basins, 2022
- 4. Charles Zaiontz, *Kendall's Tau* Table, https://real-statistics.com/statistics-tables/kendalls-tau-table/, 2021
- 5. White et al, Recent US Climate Change and Hydrology Literature Applicable to US Army Corps of Engineers Missions Lower Mississippi River Region 08, 2015
- 6. Terando et al, *Impacts, Risks, and Adaptation in the United States Fourth National Climate Assessment, Volume II Chapter 19*, 2018 *Southeasthttps://*nca2018.globalchange.gov/chapter/19/
- 7. Colten, Craig E., *As Inland Becomes Coastal: Shifting Equity and Flood Risk in the Amite River Basin (USA)*, https://www.ingentaconnect.com/content/whp/ge/2021/00000014/0000003/art000005, 2021
- 8. Johnson et al, *Modeling Streamflow and Water Quality Sensitivity to Climate Change and Urban Development in 20 U.S. Watersheds*, https://onlinelibrary.wiley.com/doi/full/10.1111/1752-1688.12308, 2015
- 9. Cowles, Alexandre G.H., EFFECTS OF HISTORICAL LAND-USE CHANGE ON SURFACE RUNOFF AND FLOODING IN THE AMITE RIVER BASIN, LOUISIANA, USA USING COUPLED 1D/2D HEC-RASHEC-HMS HYDROLOGICAL MODELING, 2021

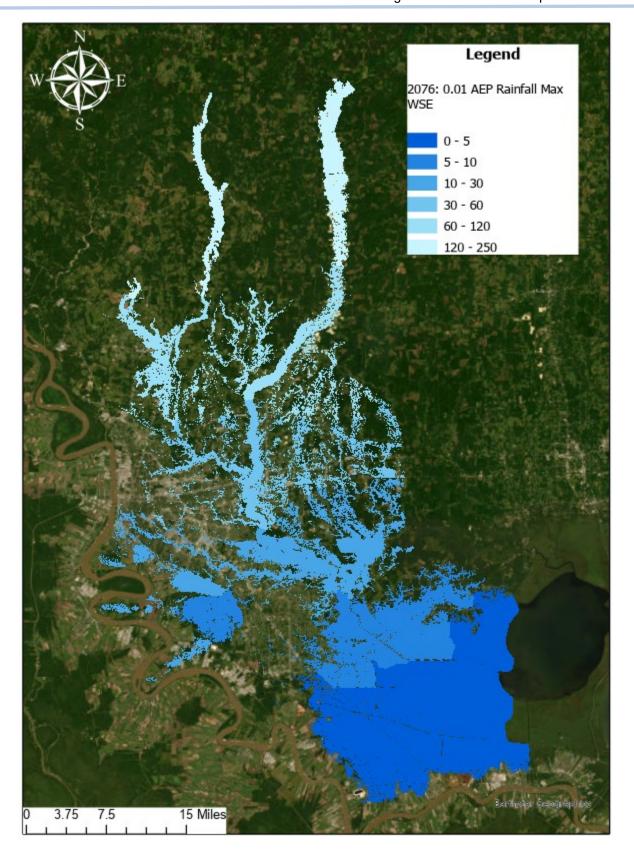

9.0 ANNEXES

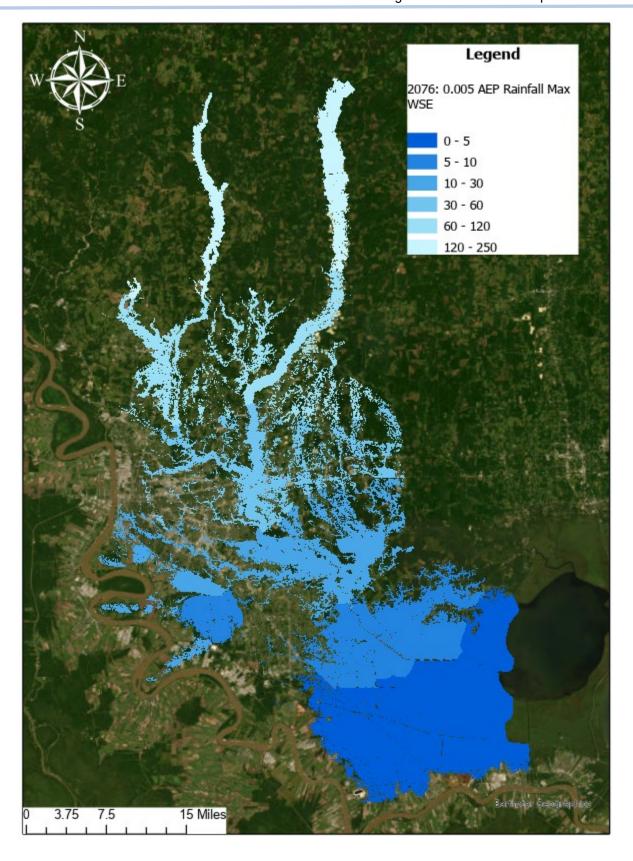

9.1 Annex H-1: Production Run WSE Maps

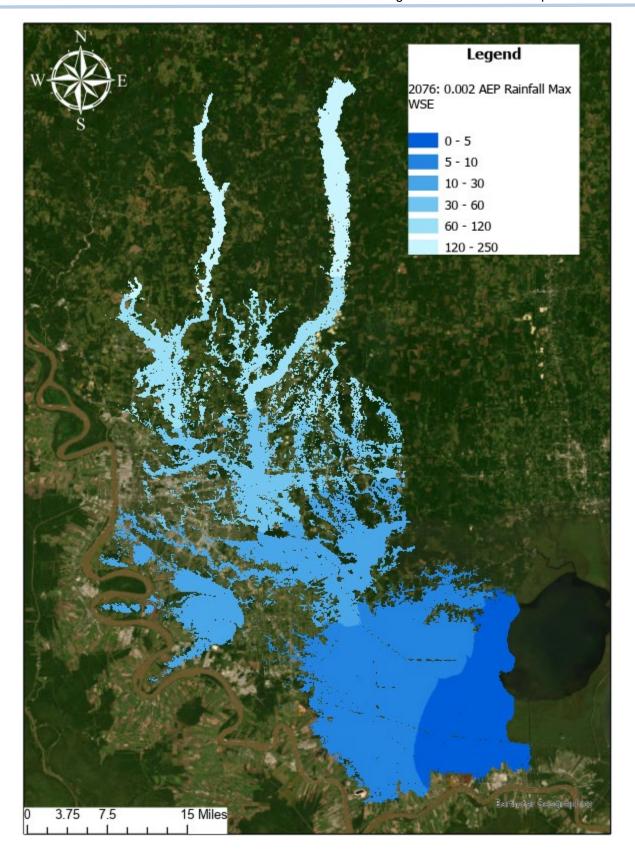


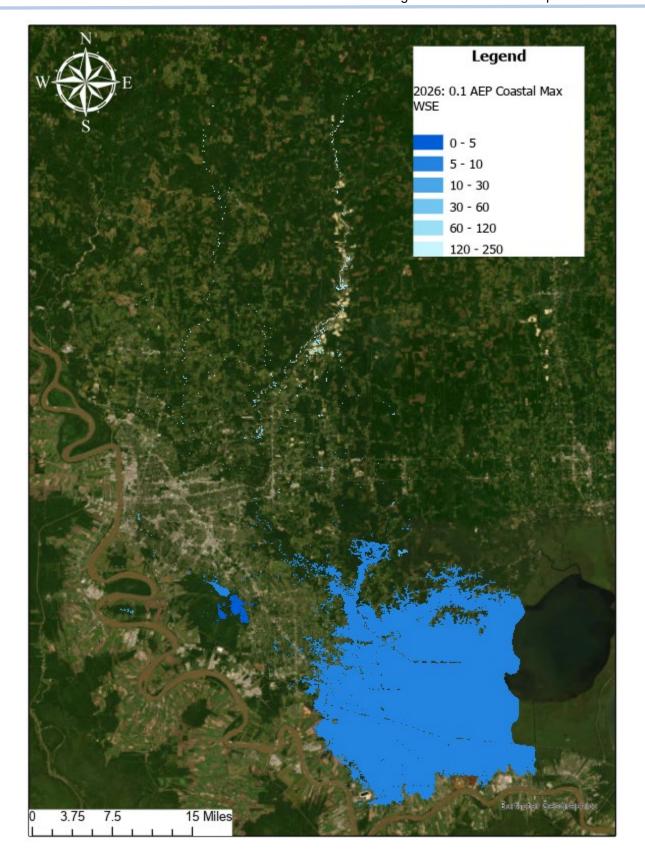


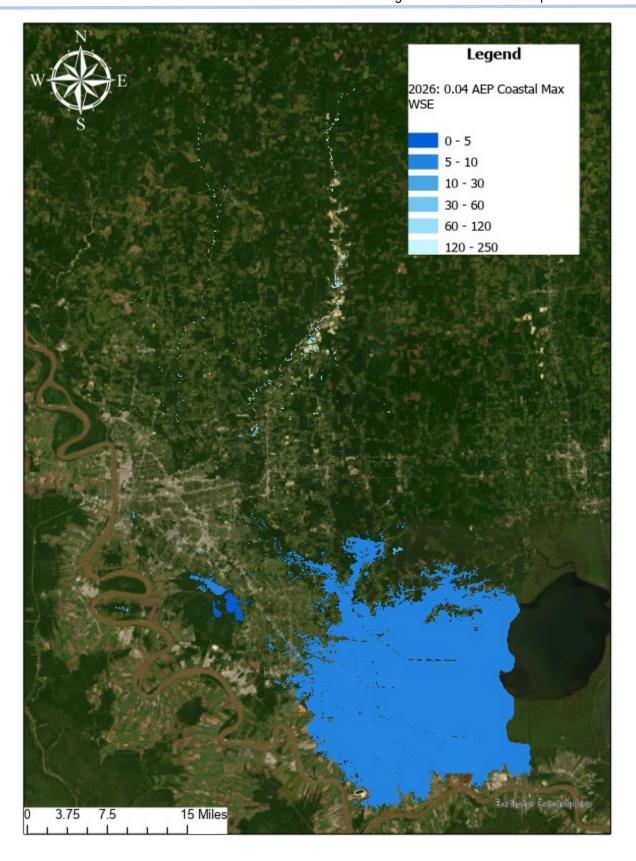


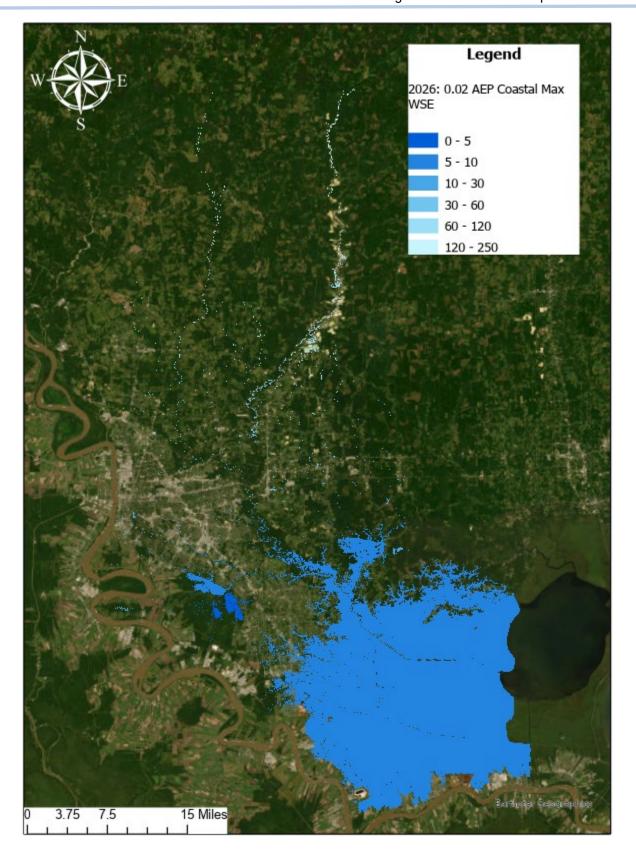


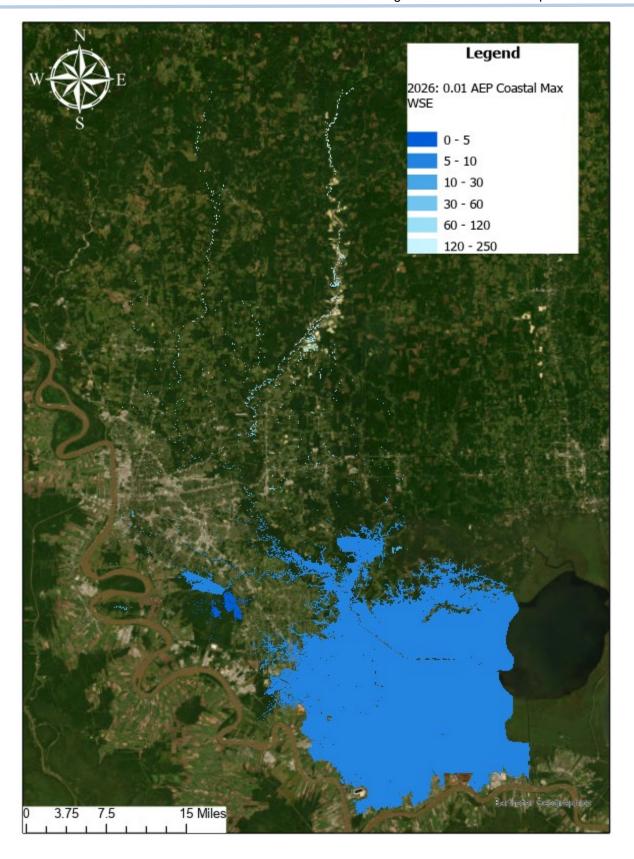


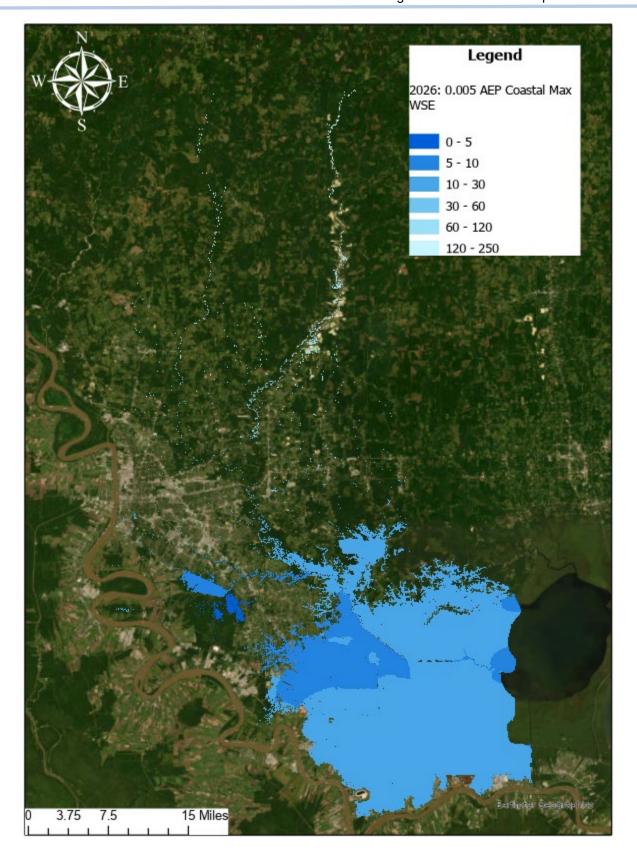


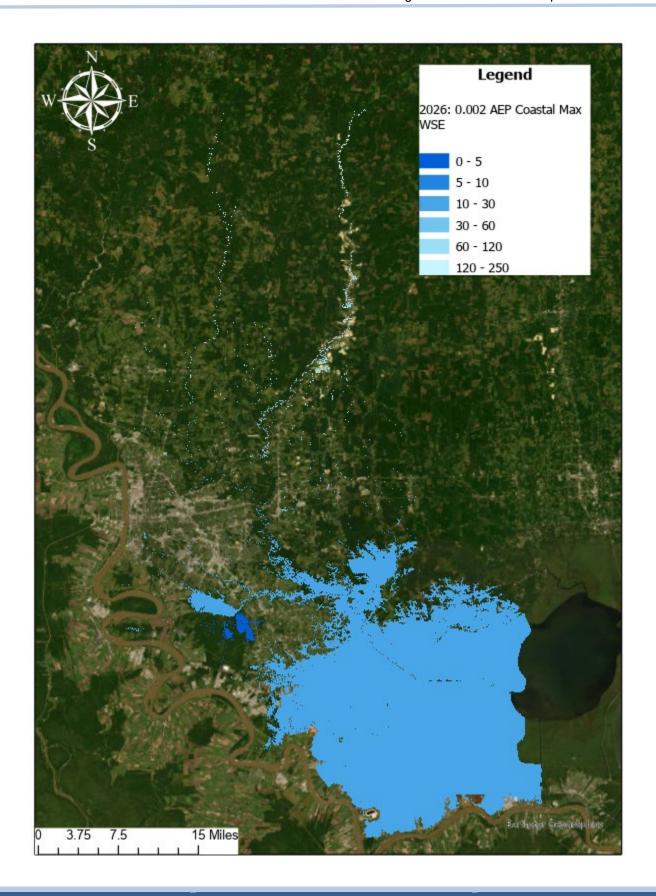


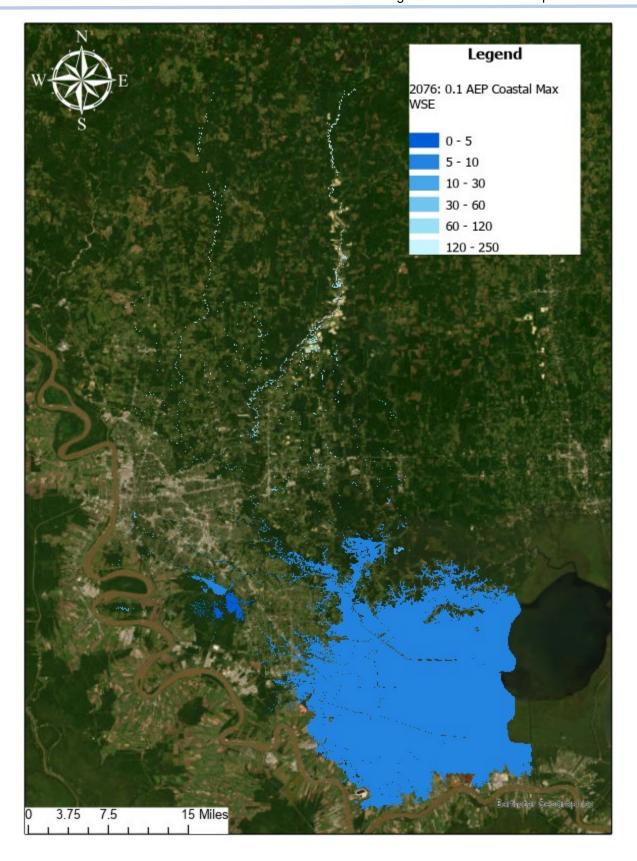


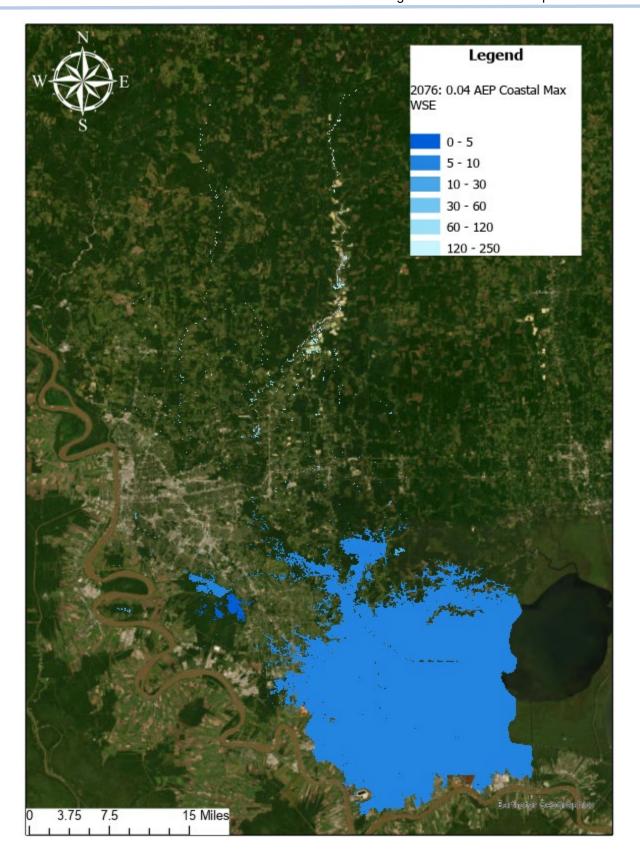


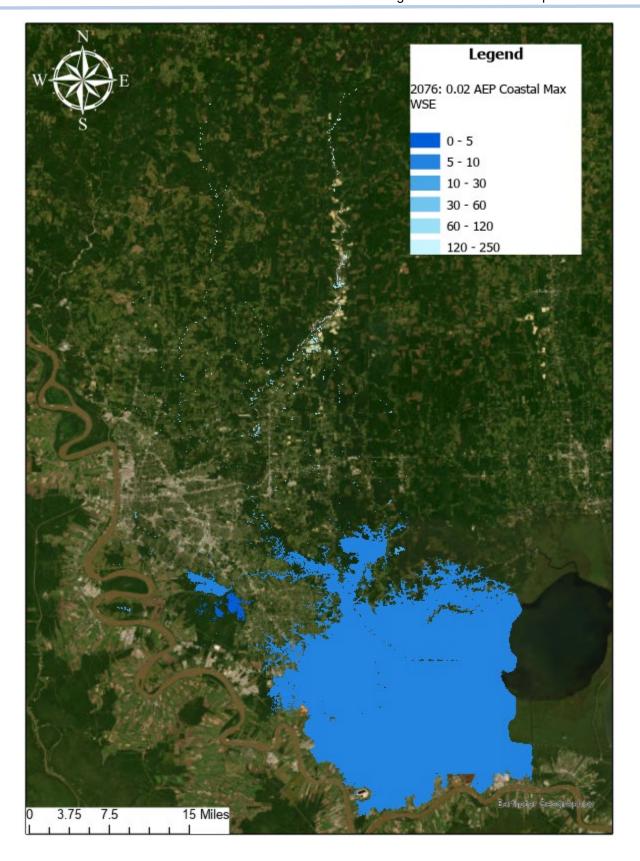


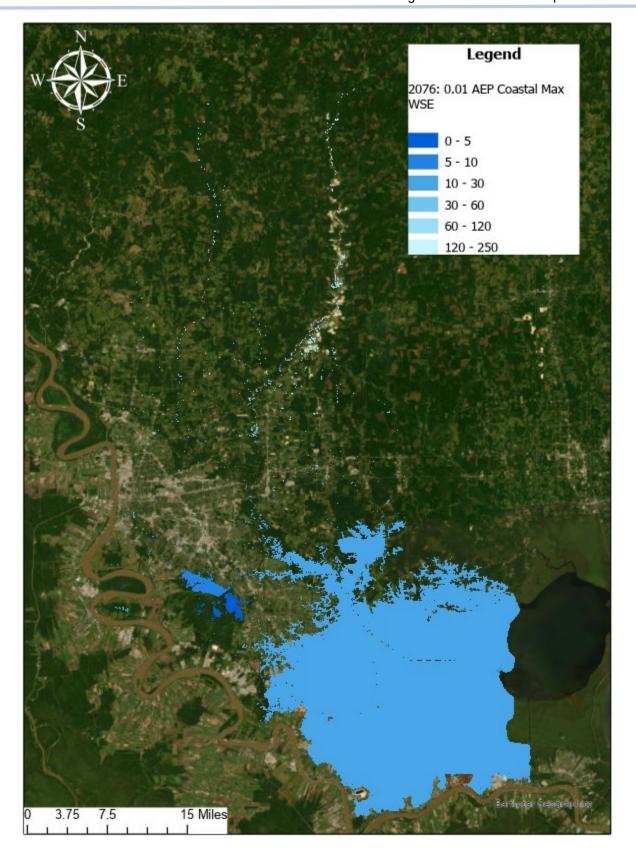


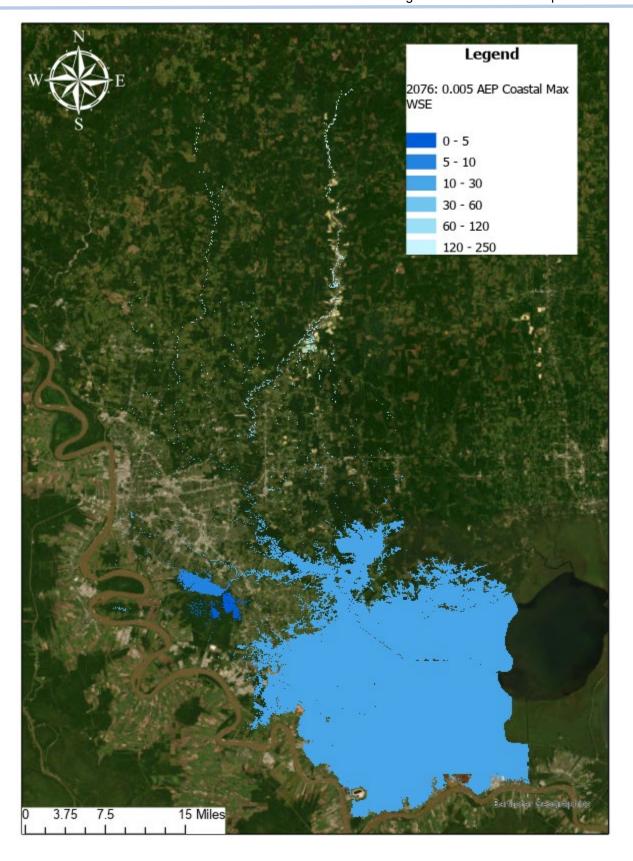


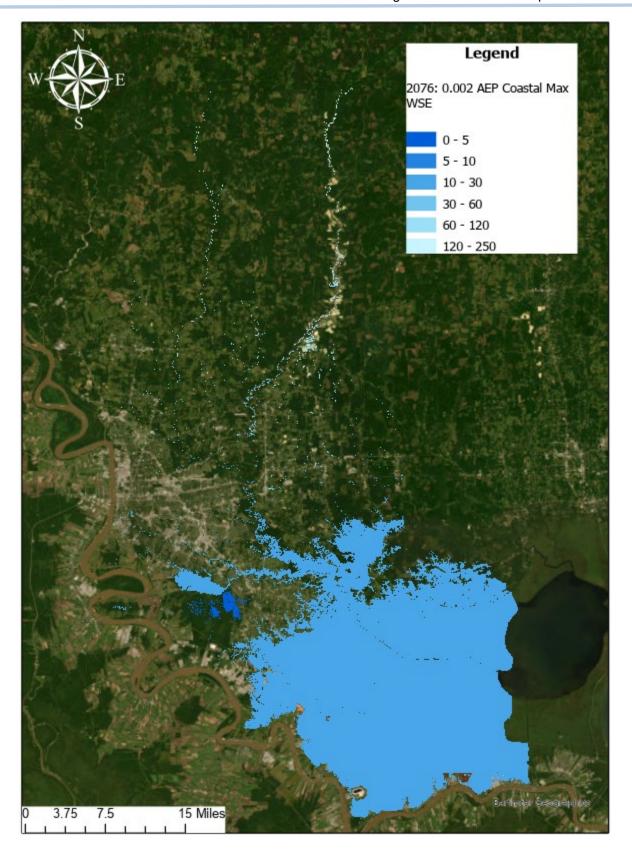


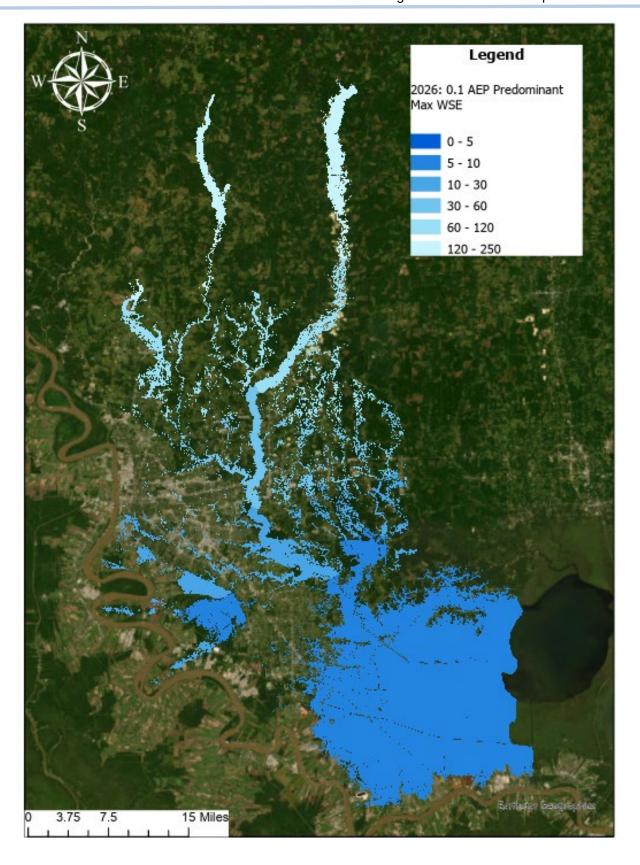


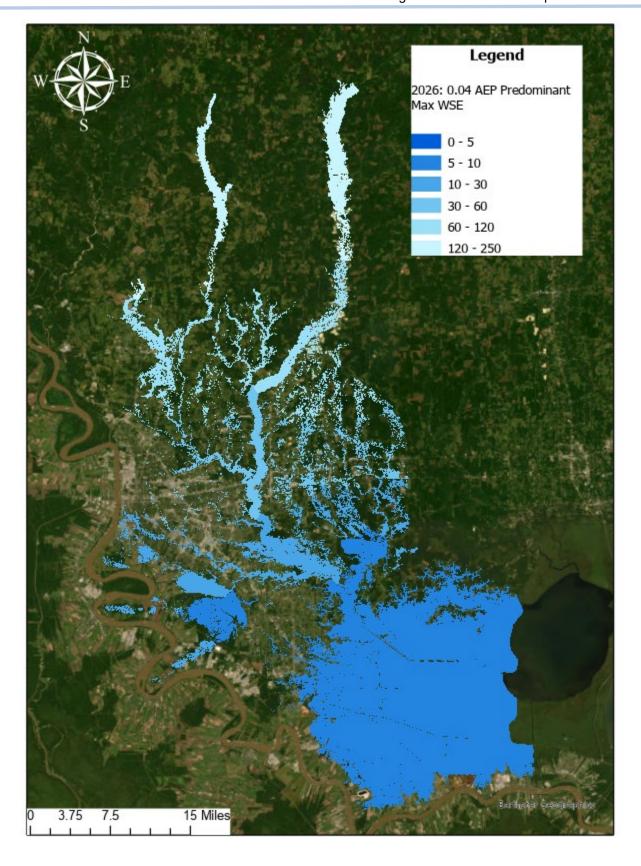


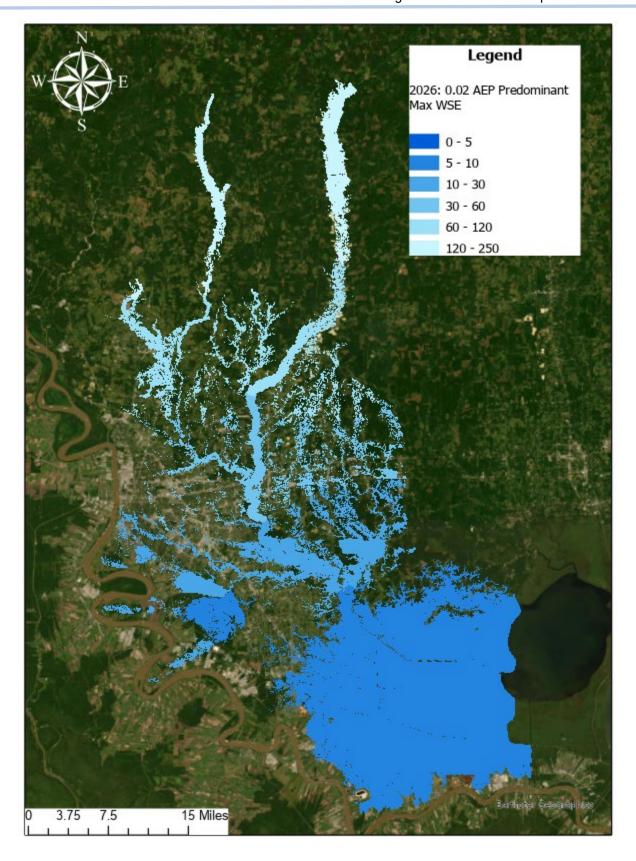


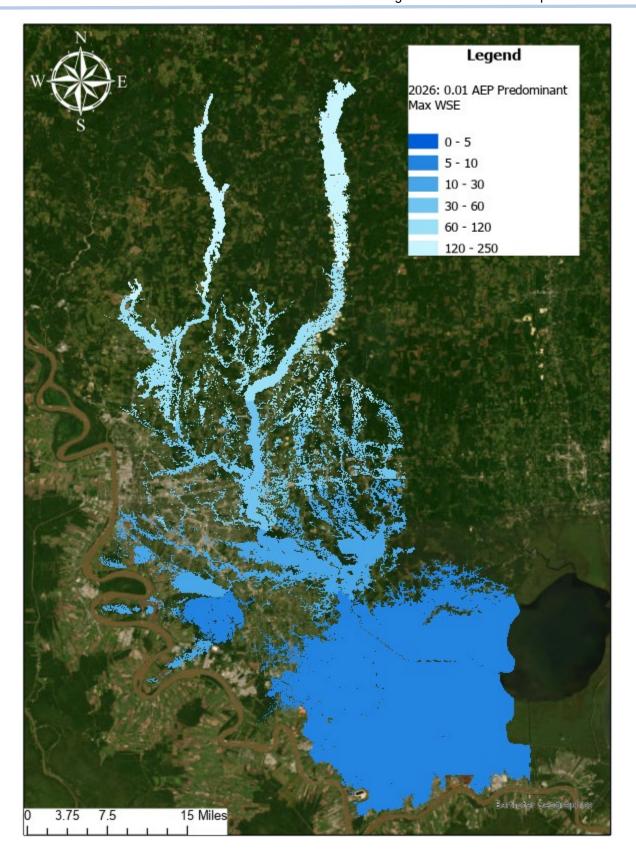


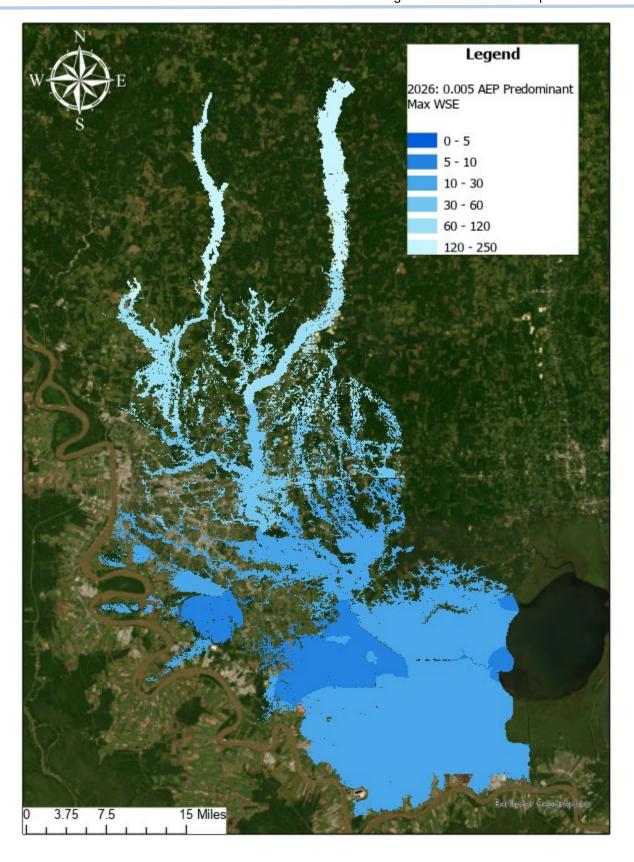


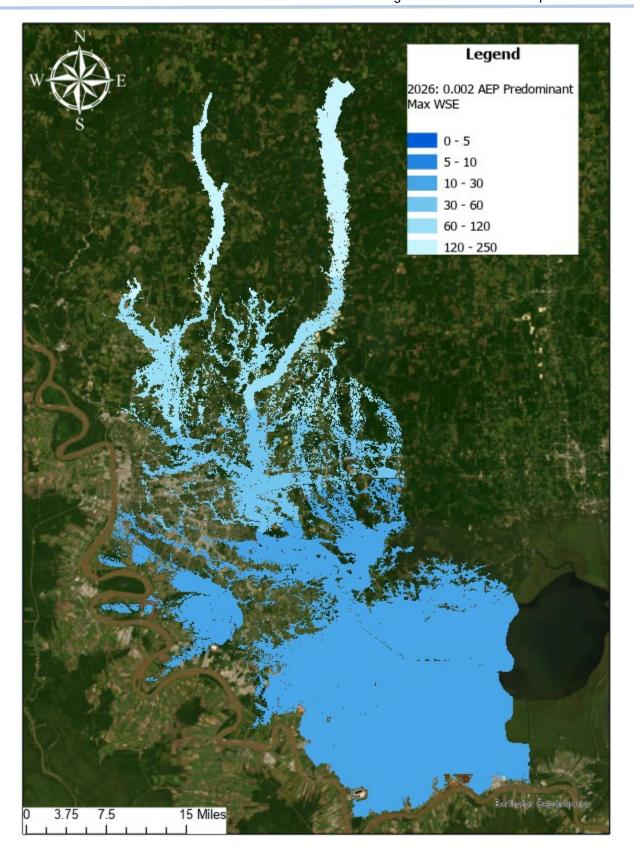


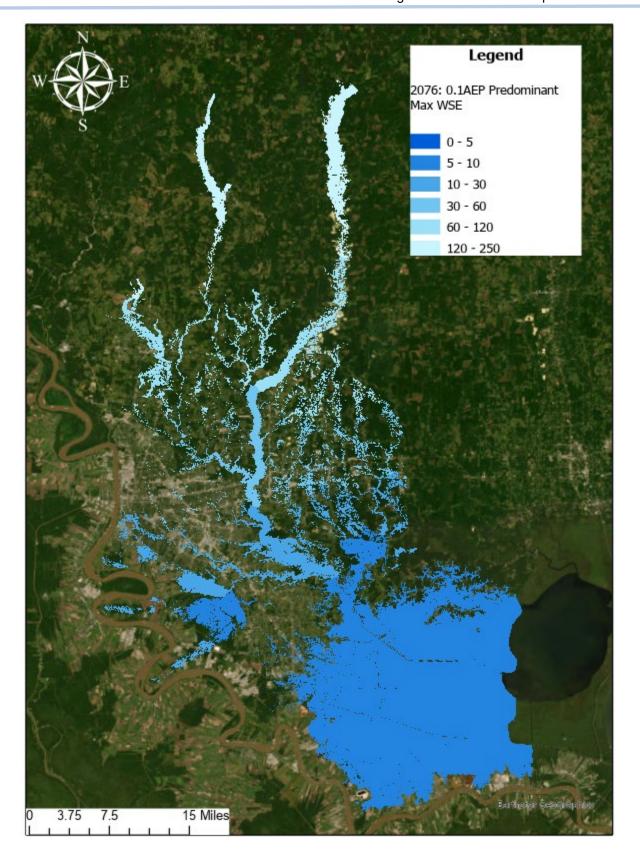


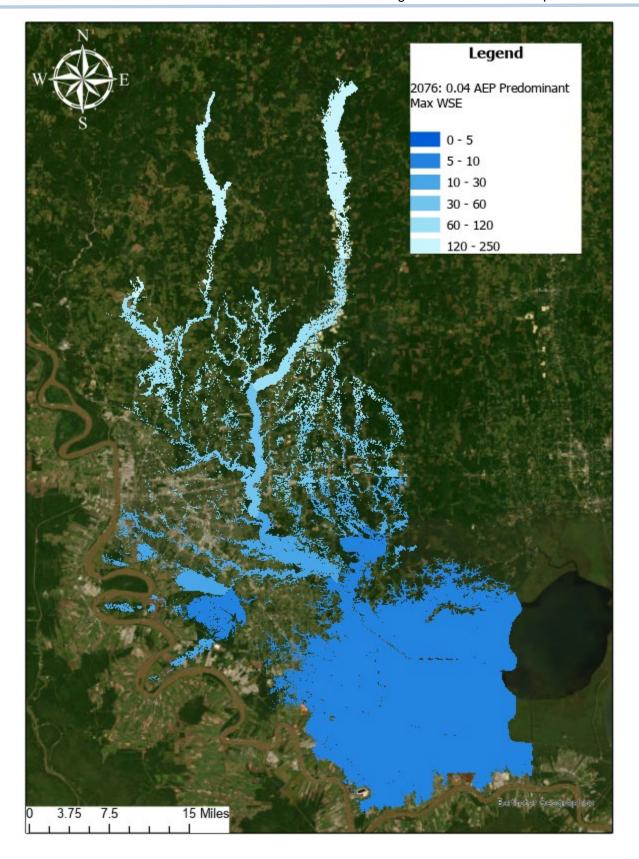


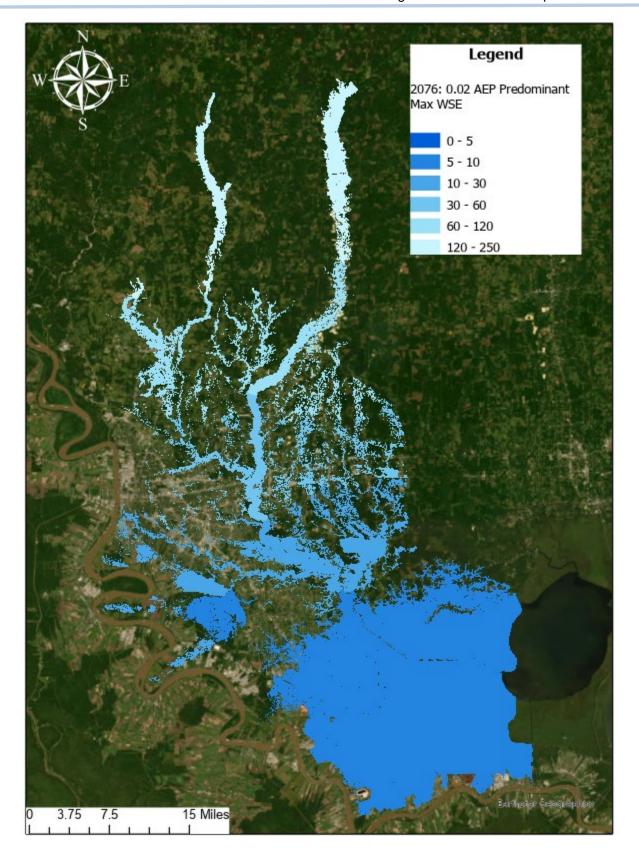


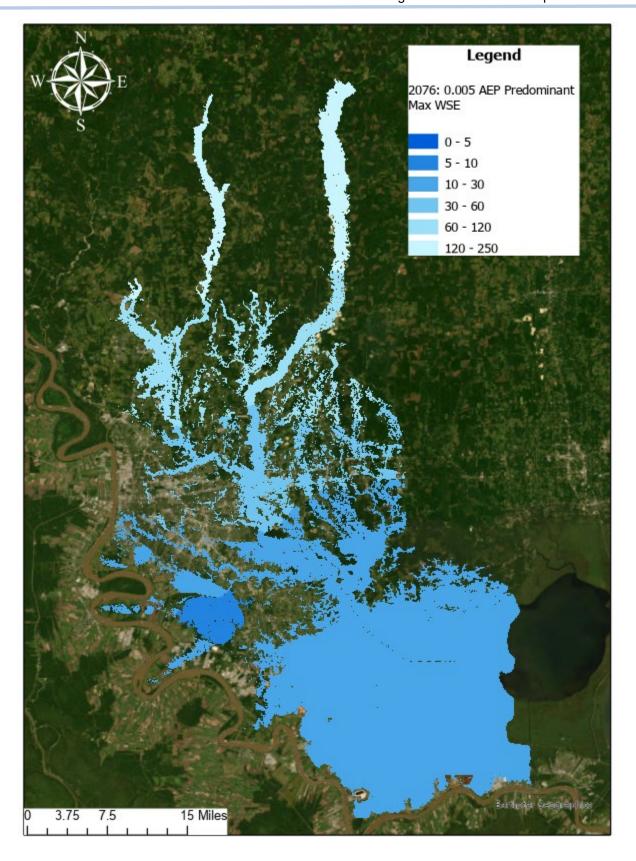


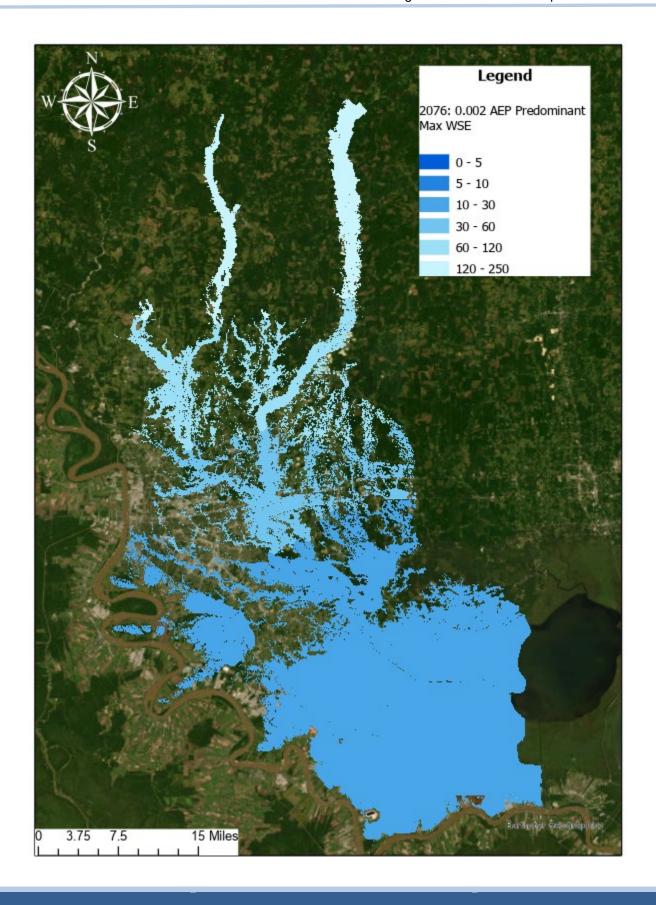


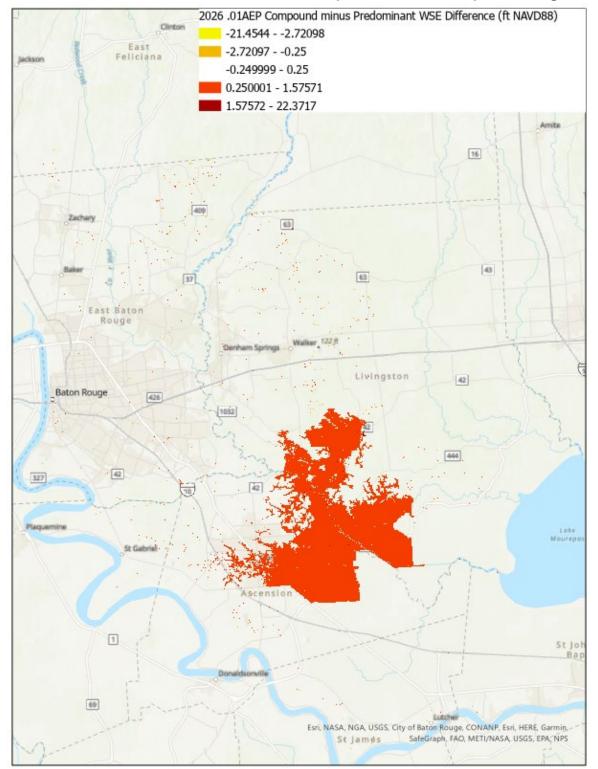


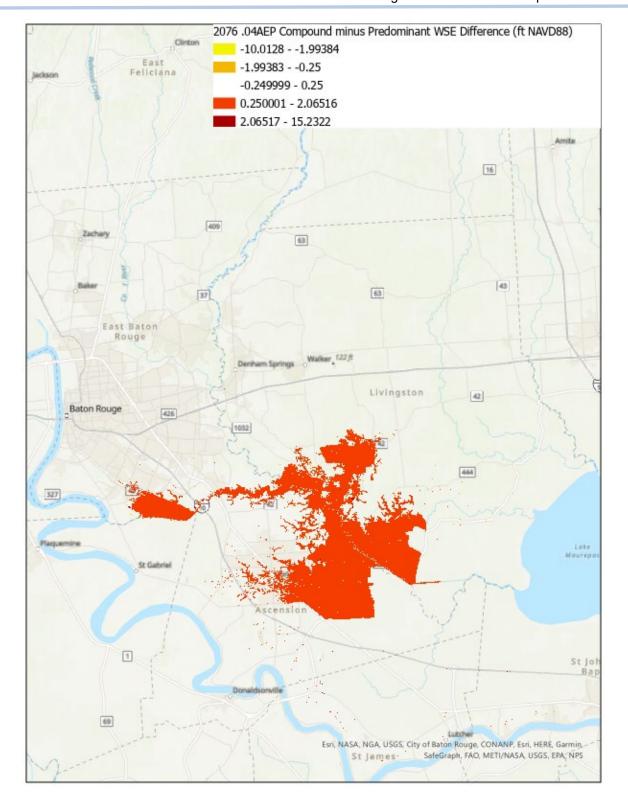


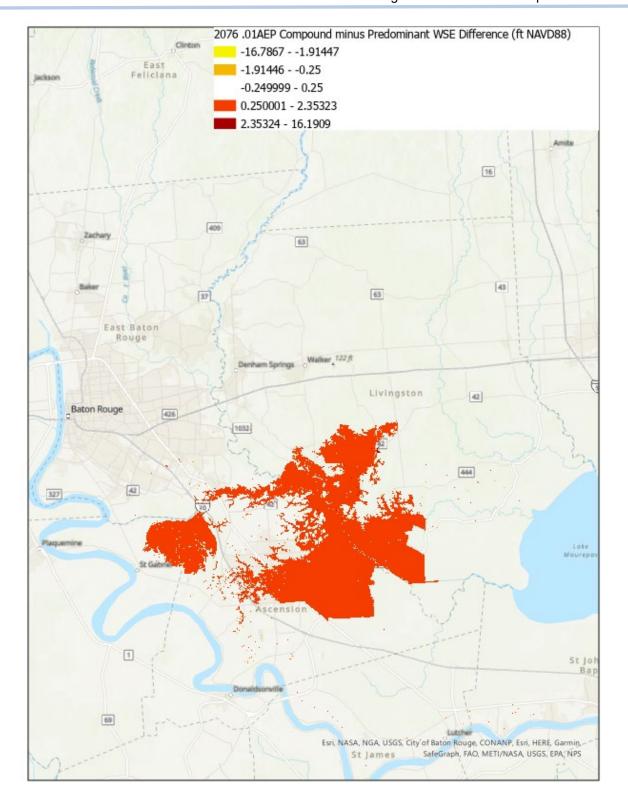




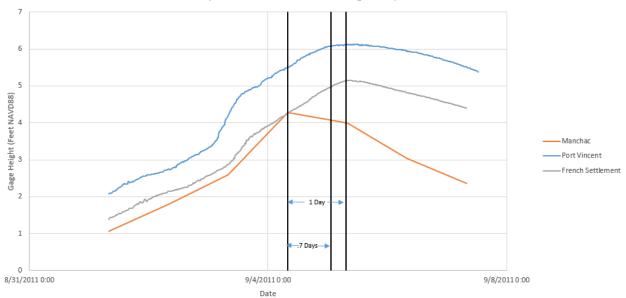


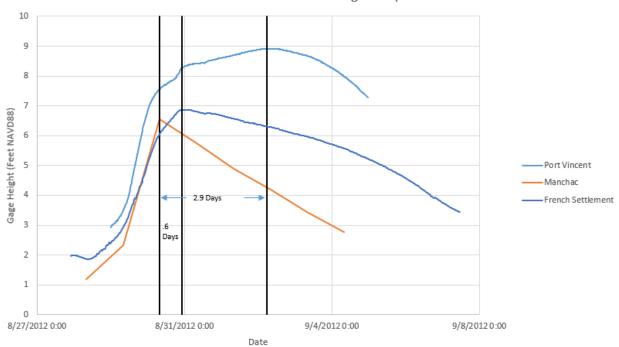




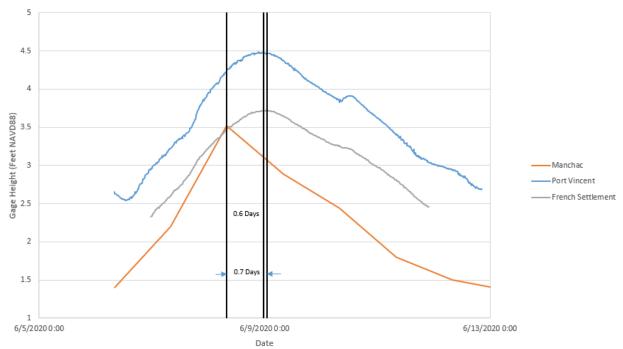


9.2 Annex H-2: Predominant versus Compound Flood Comparison Figures

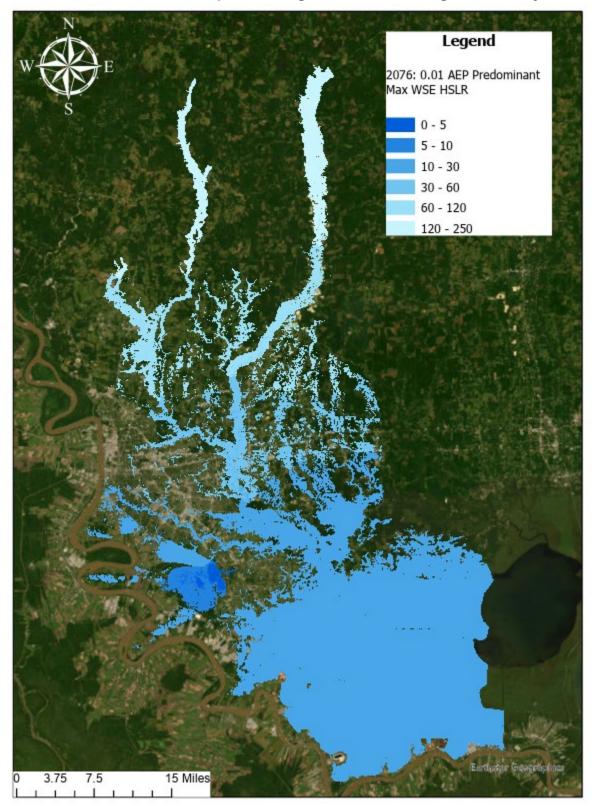


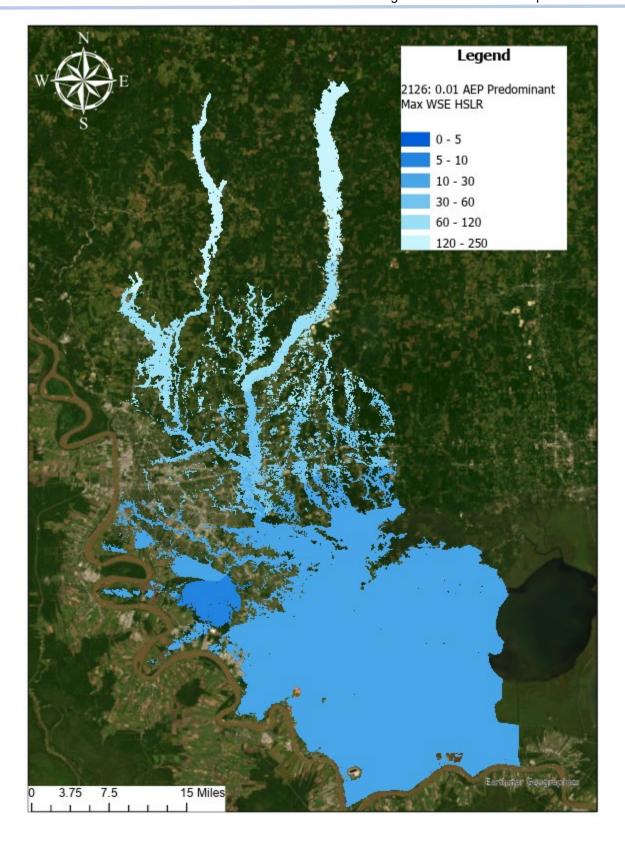


9.3 Annex H-3: Compound Flood Analysis - Gage Lag Time Plots

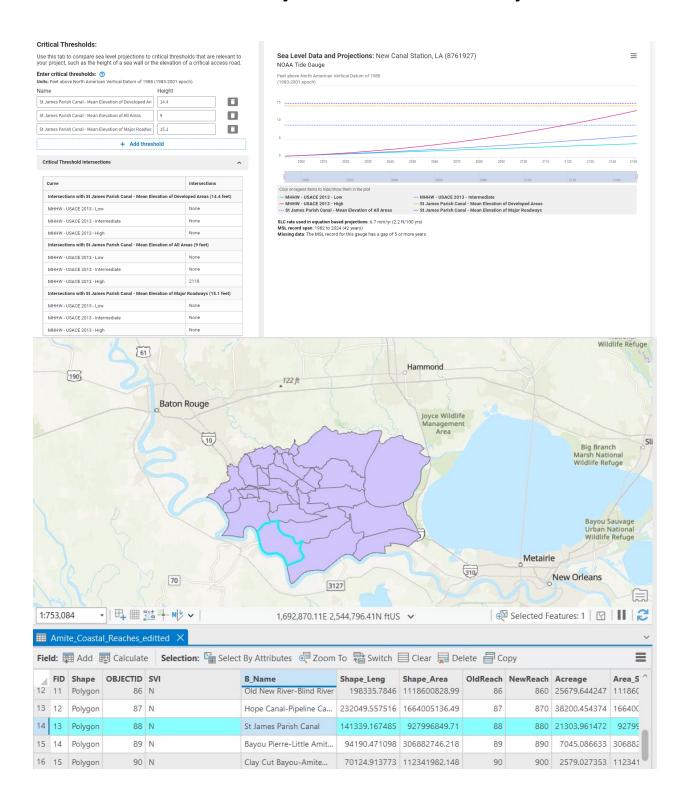


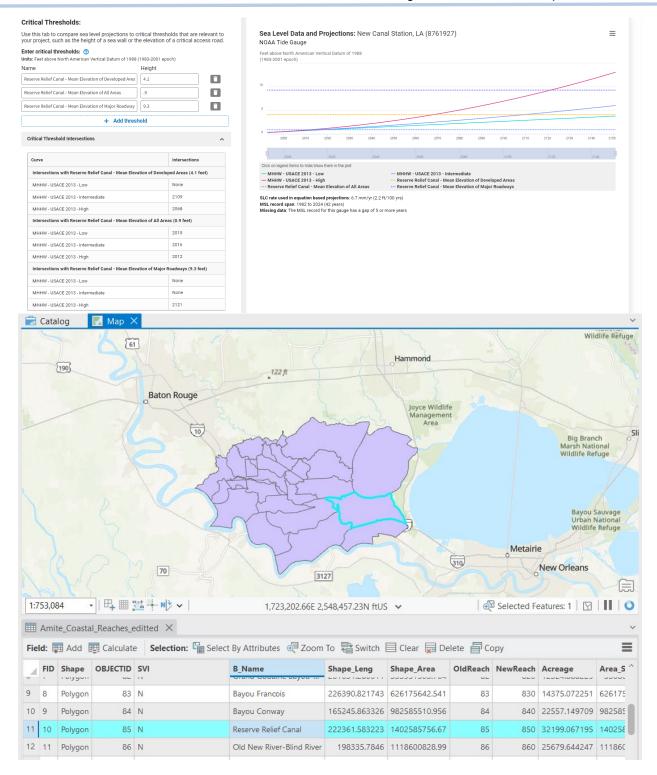
Hurricane Isaac 2012 Peak Stage Comparison

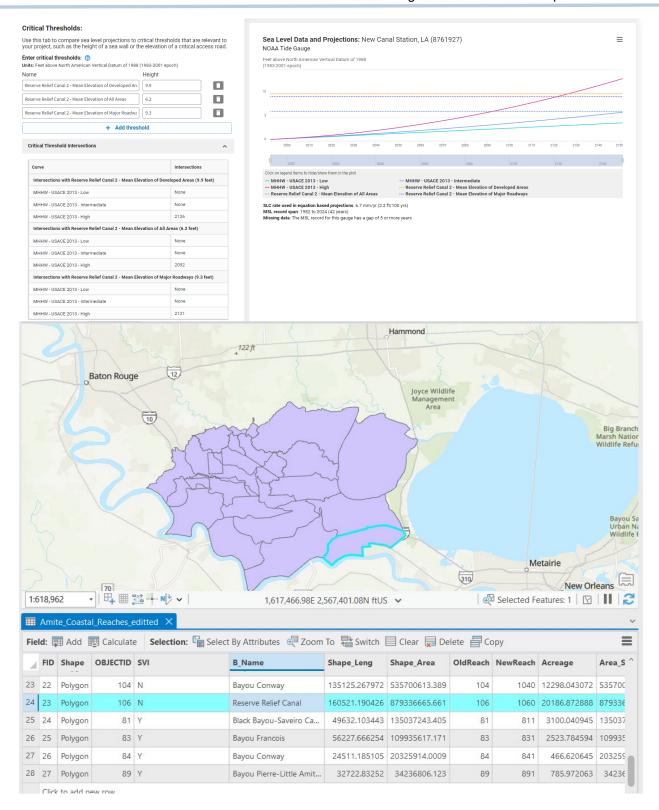




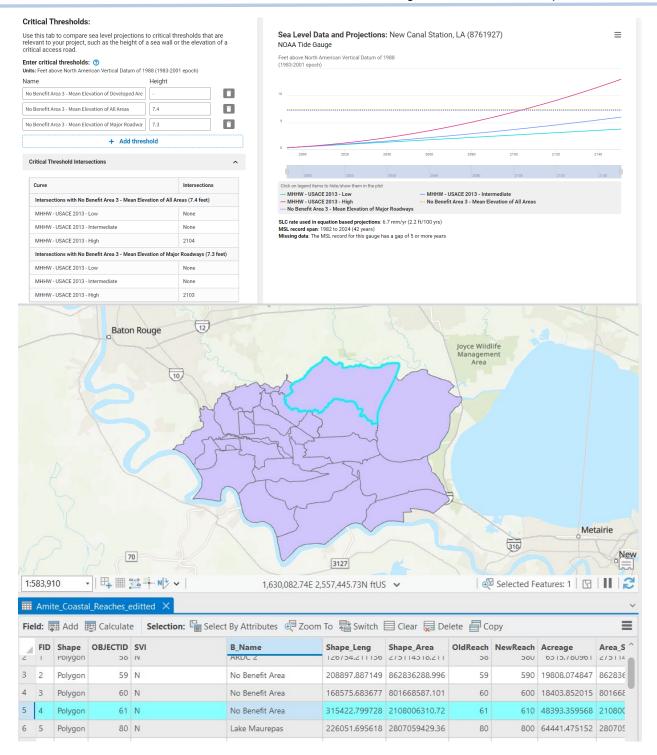
Hurricane Ida 2021 Peak Stage Comparison

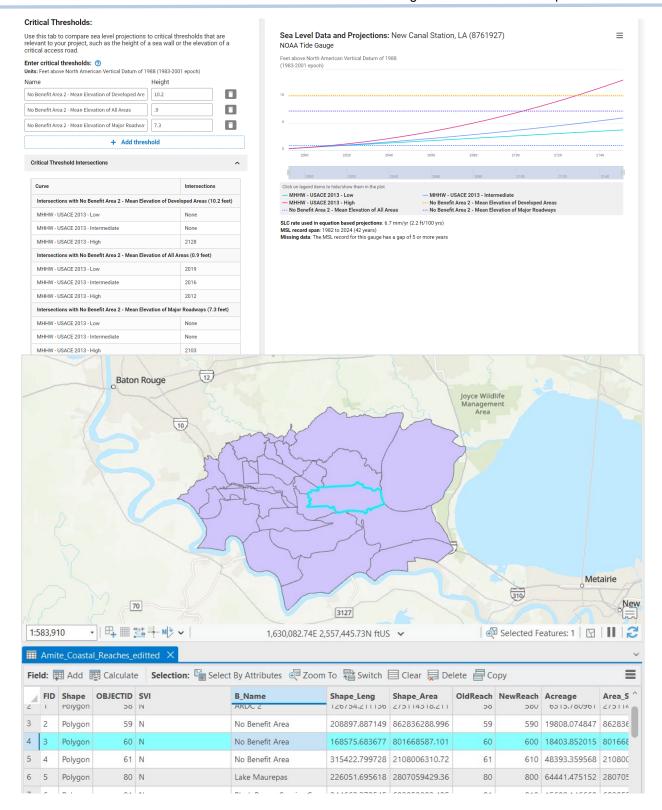


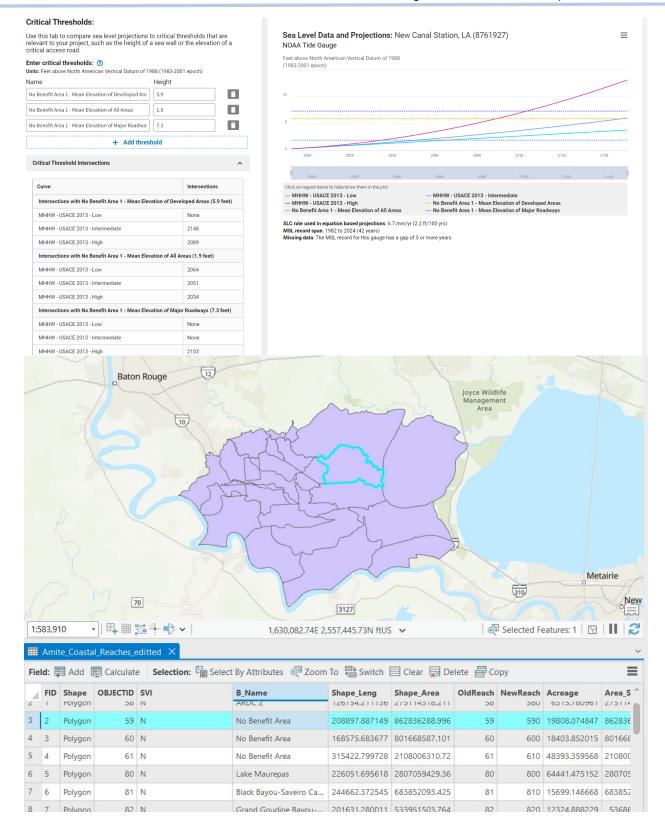

9.4 Annex H-4: WSE Outputs for High Sea Level Change Sensitivity Runs

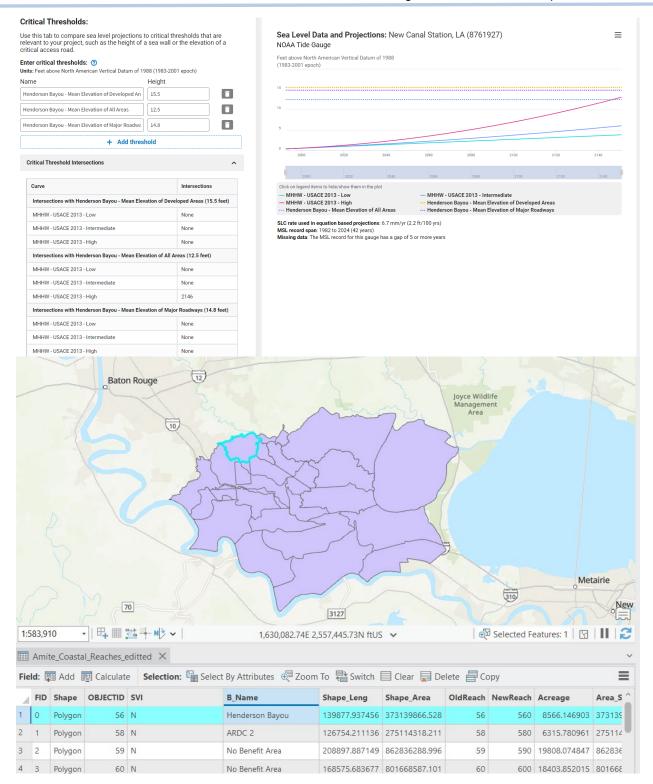


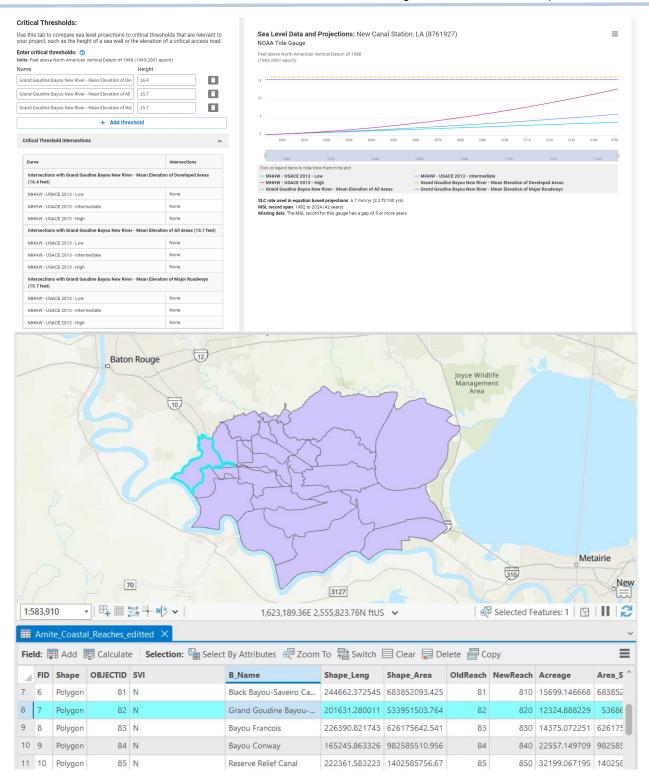


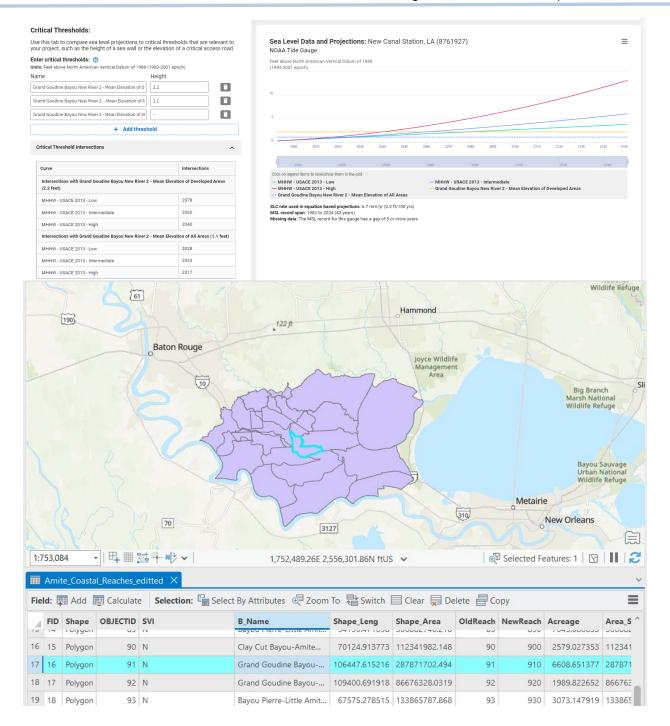

9.5 Annex H-5: Sea Level Analysis Tool RSLR Rate Sensitivity Plots

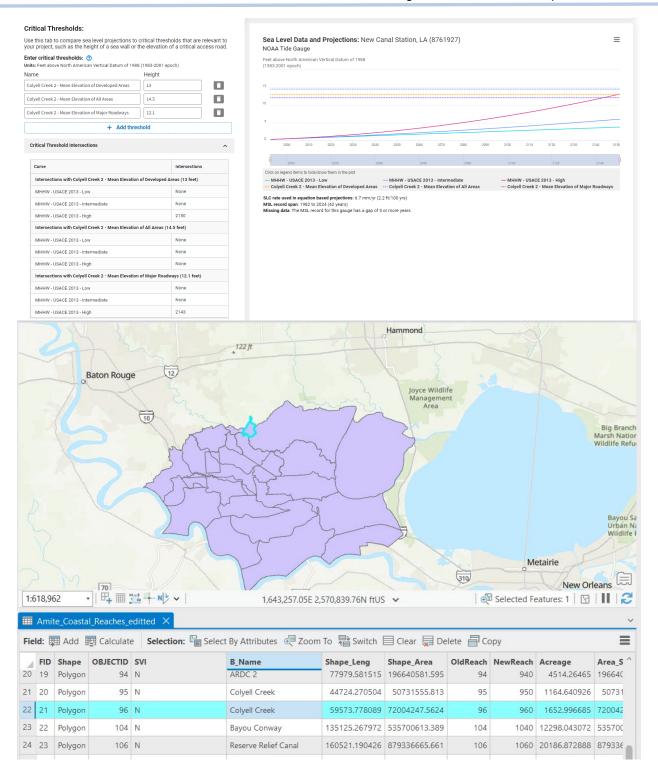


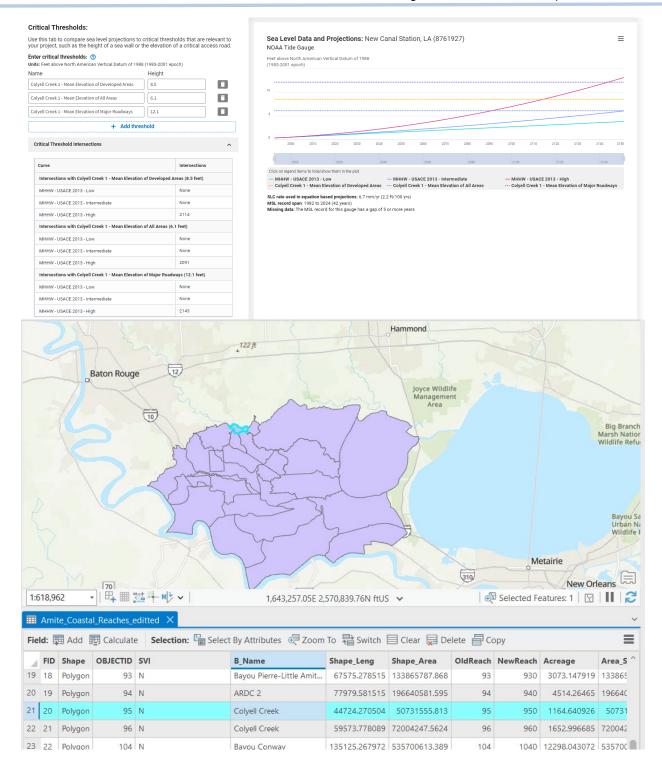


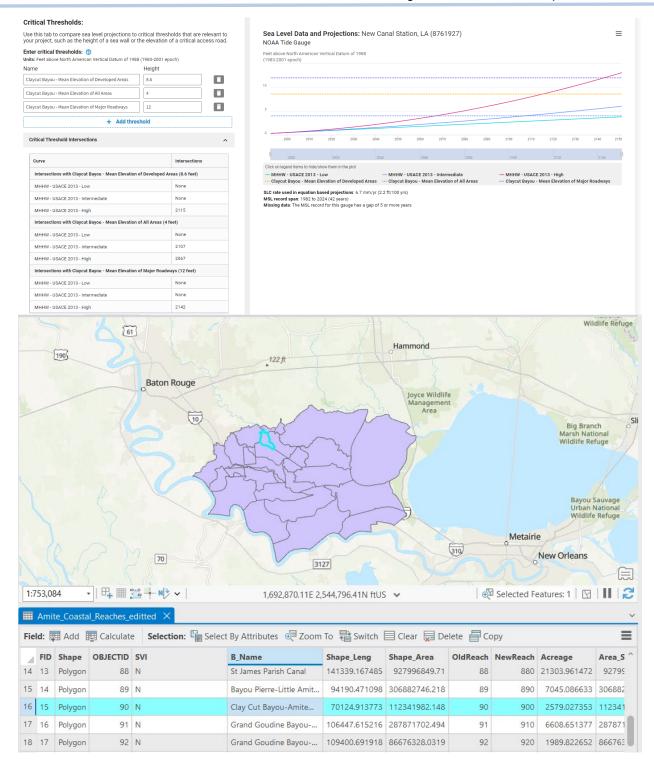


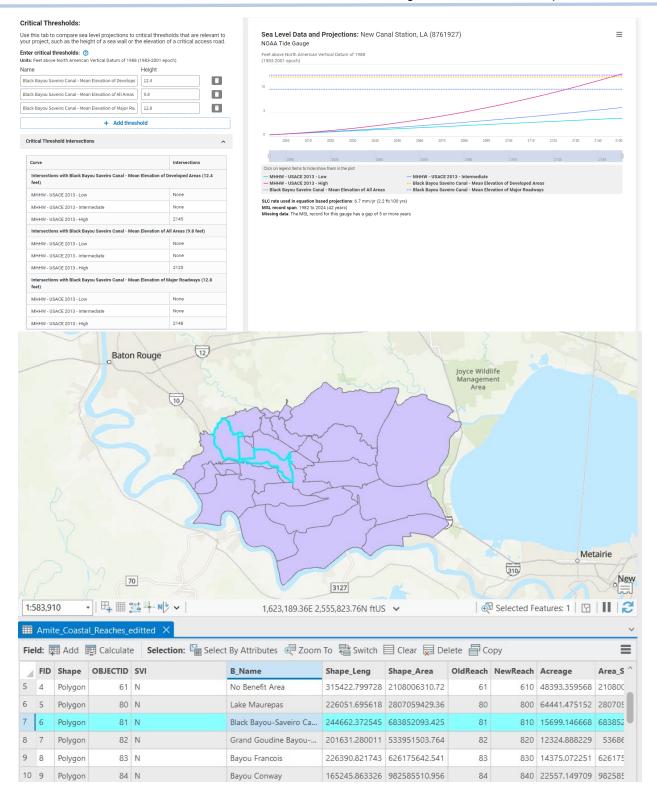


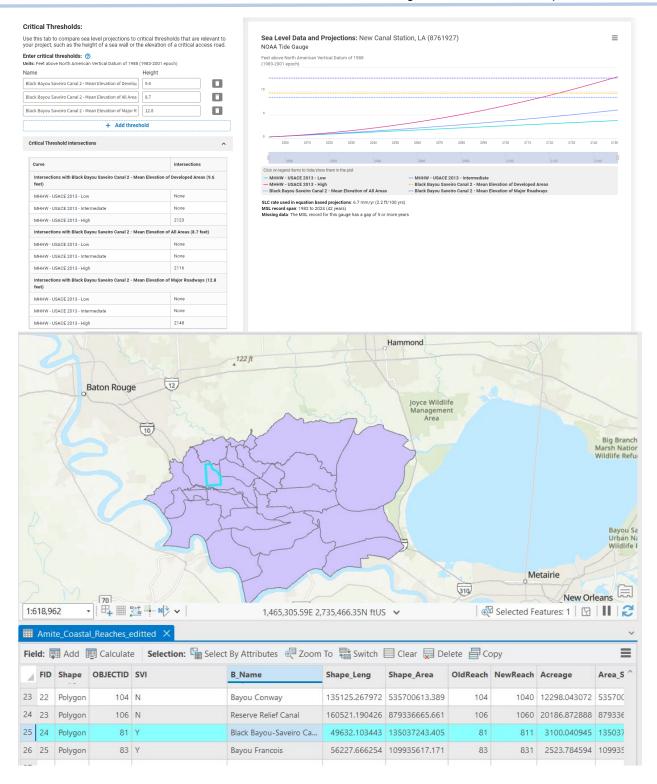


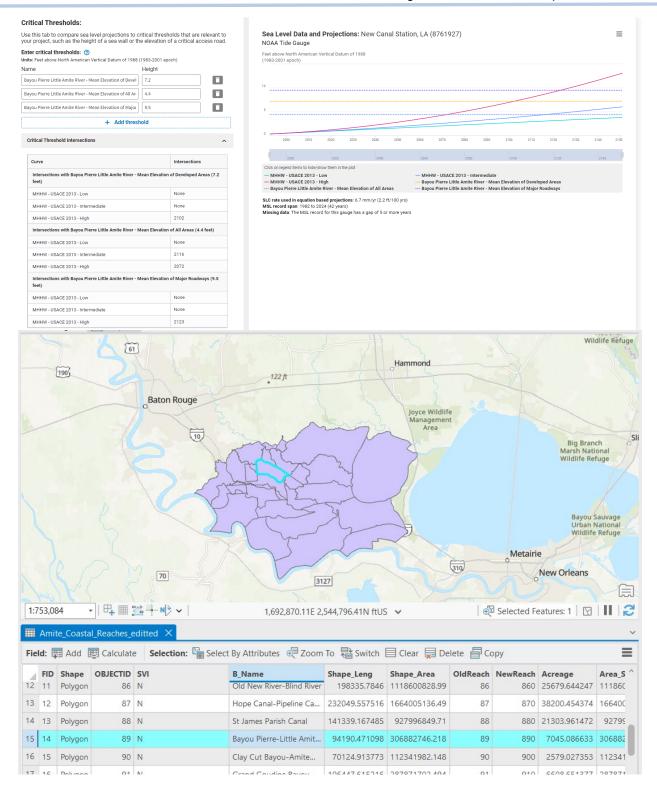


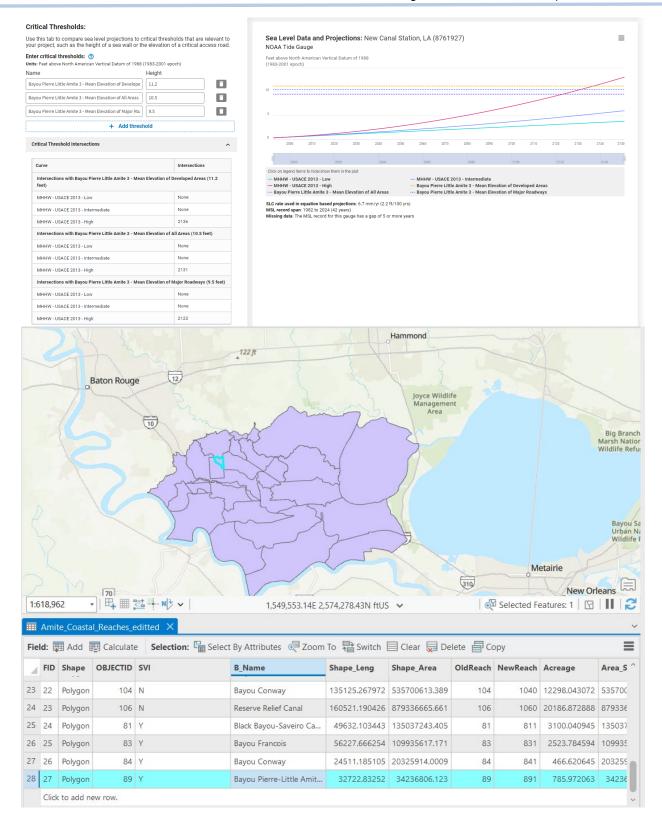


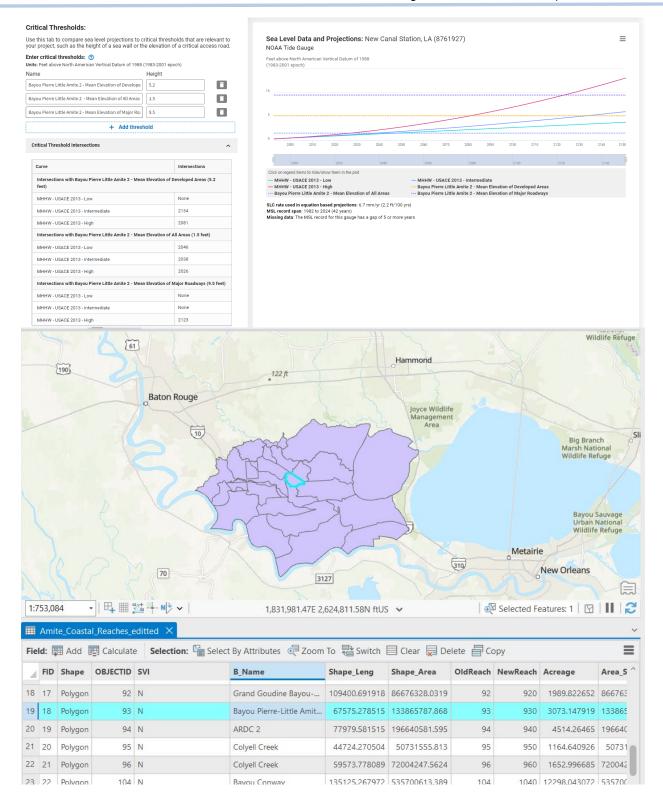


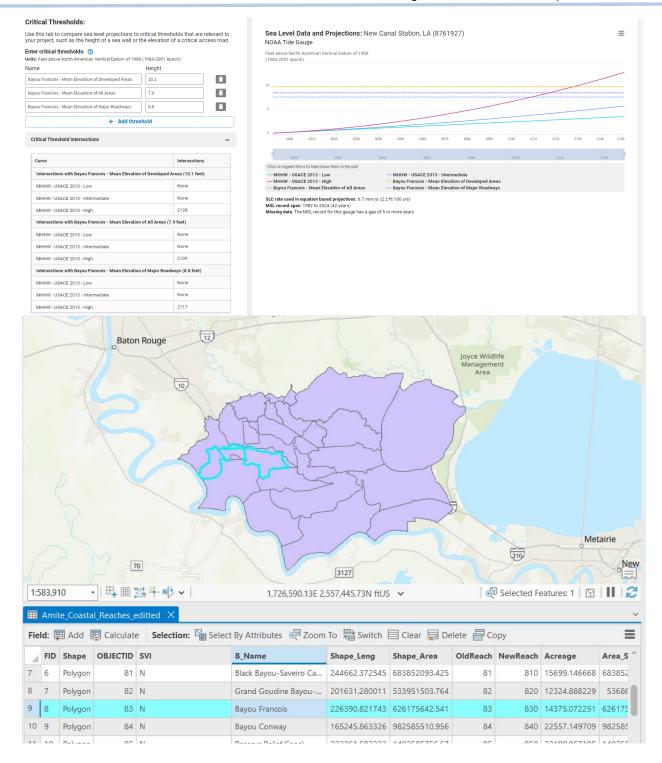


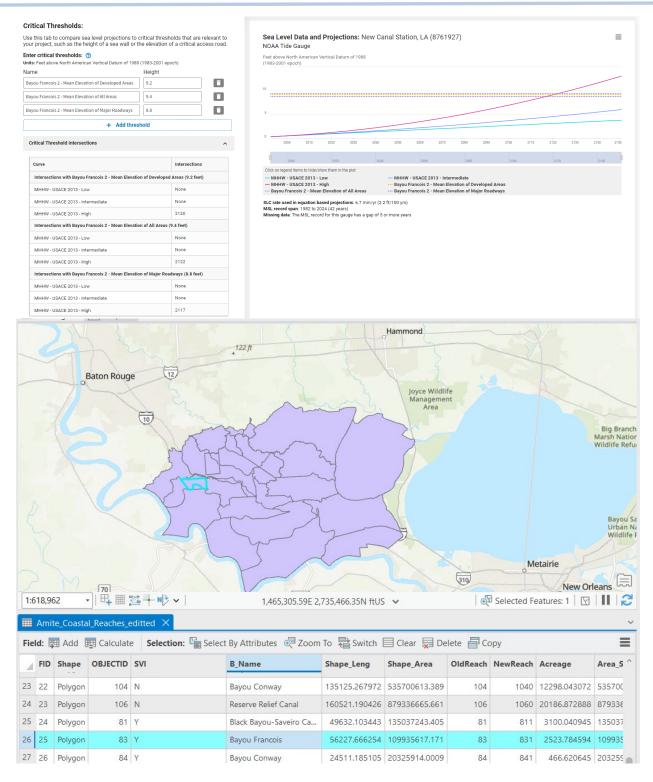


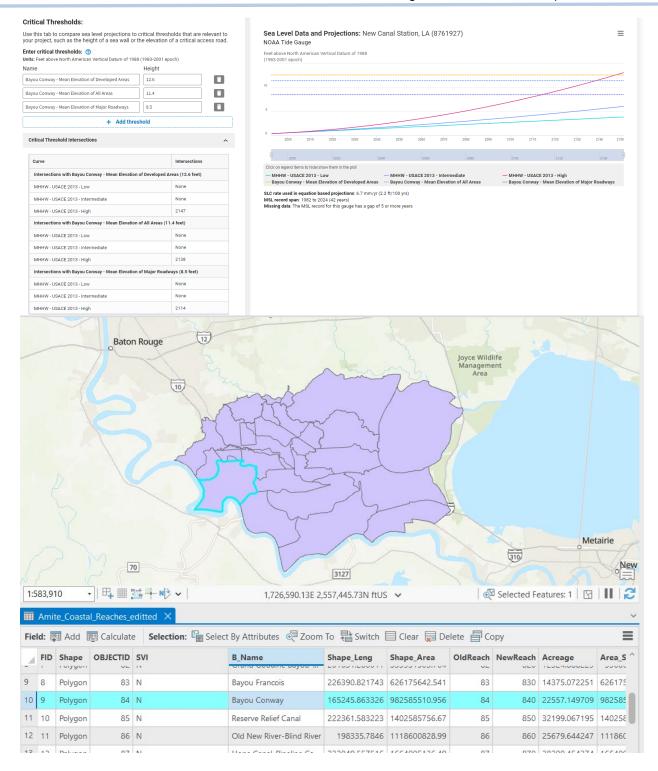


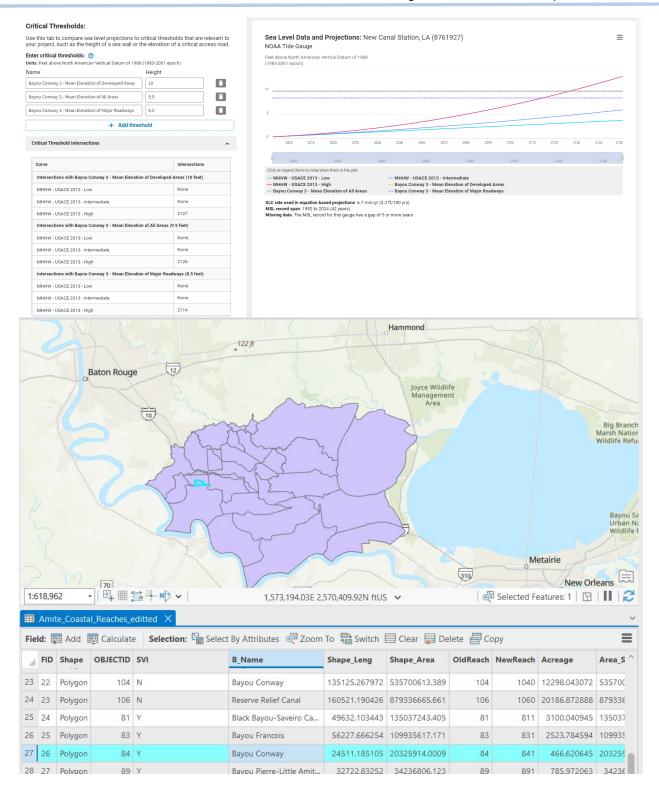


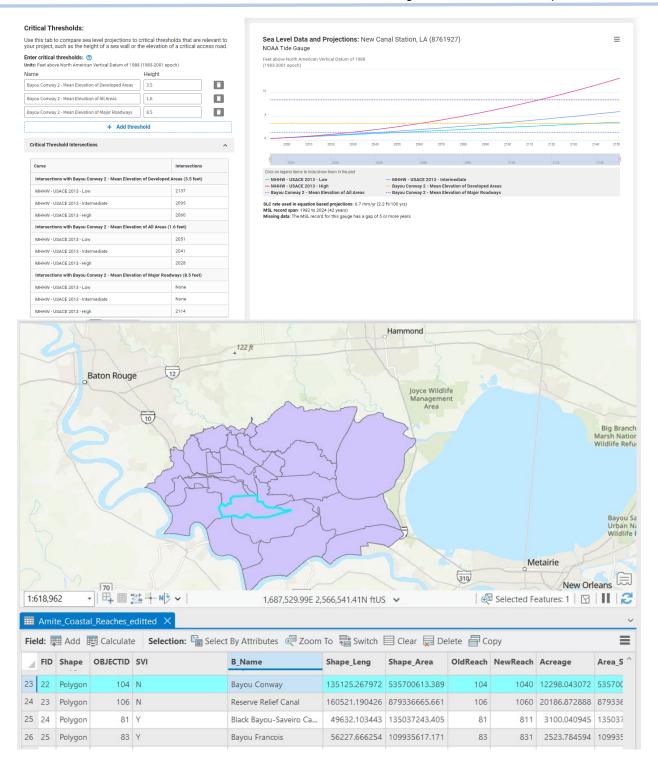


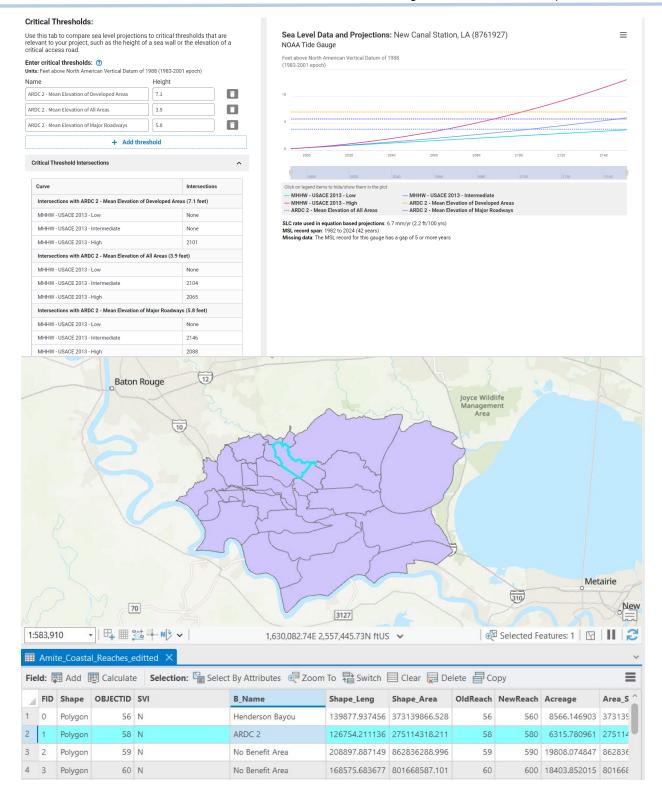


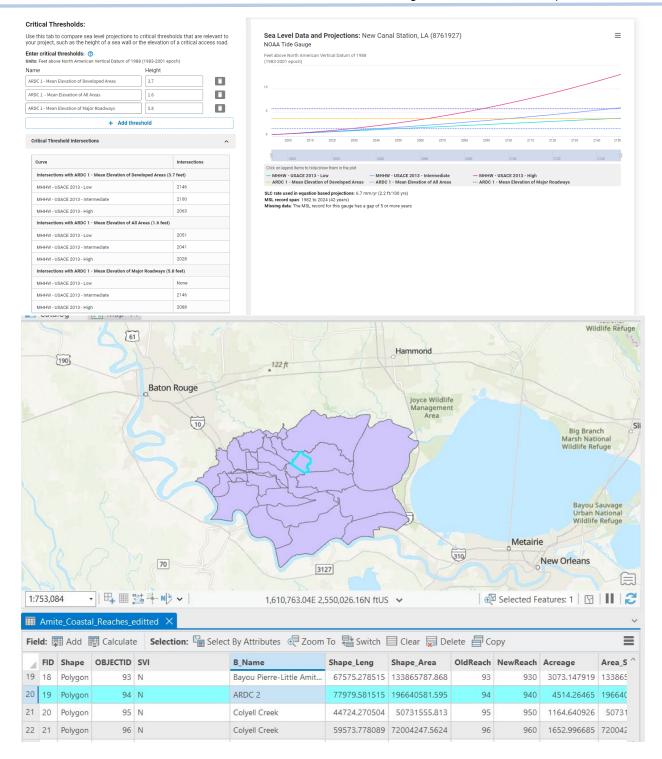











129

9.6 Annex H-6: Hydrologic Parameters

Hydrologic Parameters for Baseline Conditions Year 2026

Subbasin	Initial Content	Saturated Content	Suction	Conductiv	Imperviou s %
AllenByu_HWY1032	0.24	0.34	6.55	0.042	14.723
AlligatorT_Bluff	0.25	0.35	6.99	0.034	24.689
AmiteDivCnl_C01	0.21	0.29	11.09	0.008	0.32278
AmiteDivCnl_C02	0.19	0.26	10.59	0.012	1.9516
AmiteDivC_HWY22	0.19	0.27	8.42	0.026	5.0764
AmiteRT34_HWY16	0.23	0.32	6.12	0.048	18.757847 3
AmiteR_BarbByu	0.24	0.34	7.59	0.037	0.59844
AmiteR_BeaverCrk	0.24	0.33	6.45	0.043	0.31386
AmiteR_BluffCrk	0.22	0.31	7.29	0.082	0.98757
AmiteR_ChaneyBr	0.27	0.38	8.4	0.018	1.9461
AmiteR_ChinqCan	0.24	0.33	8.23	0.027	2.5637
AmiteR_ClearCrk	0.24	0.34	5.51	0.056	0.73317
AmiteR_ColBay	0.2	0.29	6.96	0.025	3.5710
AmiteR_C01	0.23	0.32	6.31	0.041	0.69007
AmiteR_C02	0.21	0.3	5.91	0.038	2.3832
AmiteR_C03	0.23	0.32	6.22	0.046	0.72344
AmiteR_C04	0.22	0.32	6.18	0.039	7.1112
AmiteR_C05	0.23	0.32	6.25	0.047	5.4095
AmiteR_C06	0.23	0.33	6.76	0.032	8.6628
AmiteR_C07	0.23	0.32	6.32	0.041	5.1488
AmiteR_C08	0.23	0.33	6.31	0.041	19.699
AmiteR_C09	0.23	0.32	6.31	0.054	2.9932
AmiteR_C10	0.23	0.32	6.3	0.041	13.018
AmiteR_C11	0.25	0.35	7.42	0.03	12.184
AmiteR_C12	0.23	0.32	6.43	0.041	14.810
AmiteR_C13	0.22	0.31	6.21	0.04	4.2200
AmiteR_C14	0.23	0.32	6.31	0.053	1.9264
AmiteR_C15	0.24	0.34	7.04	0.029	3.4939
AmiteR_DarlingCrk	0.24	0.33	6.45	0.049	0.79697
AmiteR_HendByu	0.16	0.22	8.77	0.02	7.8905
AmiteR_HWY16	0.21	0.3	9.06	0.021	2.5172
AmiteR_HWY22	0.25	0.35	8.87	0.027	0.83423
AmiteR_KingGByu	0.24	0.34	8.88	0.027	1.5132

AmiteR_L03	0.24	0.34	6.37	0.041	27.497
AmiteR_Magnolia	0.24	0.34	7.03	0.06	12.071
AmiteR_Maurepas	0.26	0.36	10.43	0.016	0.86512
AmiteR_PigeonCrk	0.21	0.3	7.73	0.06	0.74927
AmiteR_PtVincent	0.21	0.29	6.27	0.033	4.5773
AmiteR_RockyCrk	0.21	0.3	7.45	0.055	0.66443
AmiteR_R03	0.26	0.36	6.85	0.039	34.110
AmiteR_StateHwy10	0.21	0.3	6.58	0.047	0.49325
AmiteR_StateHwy37	0.2	0.28	7.2	0.06	0.65396
AmiteR_StateHwy43	0.22	0.31	6.58	0.041	0.56963
2					
AmiteR_US_Div	0.04	0.05	3.77	0.004	2.4739
AmiteR_WhittenCrk	0.23	0.32	7.2	0.052	1.0736
AmiteR_17	0.24	0.34	6.86	0.06	1.1705
AmiteR_18	0.26	0.37	7.4	0.033	0.56497
AntiochC_LeeMrtn	0.25	0.35	6.56	0.042	1.1370
BeaverBr_CnMkt	0.23	0.32	6.55	0.042	13.484
BeaverBr_DuffRd	0.23	0.32	6.55	0.042	8.2960
BeaverBr_RR	0.23	0.32	6.55	0.042	6.6681
BeaverByuNP_Hoop	0.23	0.33	6.53	0.041	14.739
BeaverByuNP_US	0.22	0.31	6.56	0.042	10.364
BeaverByu_Denham	0.22	0.31	6.56	0.041	3.0422
BeaverByu_French	0.25	0.35	6.94	0.036	17.338
BeaverByu_GrnSp	0.24	0.33	6.51	0.04	23.236486
BeaverByu_Hooper	0.22	0.31	6.52	0.041	6.0753
BeaverByu_US_LO	0.23	0.32	6.57	0.041	2.2699
С					
BeaverByu_Wax	0.23	0.32	6.55	0.039	9.2804
BeaverCrk_01	0.28	0.39	6.12	0.049	1.3090
BeaverCrk_02	0.27	0.38	6.18	0.048	0.48949
BeaverCrk_03	0.27	0.38	5.98	0.05	0.49493
BeaverCrk_04	0.26	0.37	6.21	0.046	0.28041
BeaverCrk_05	0.24	0.34	6.12	0.047	0.48243
BeaverCrk_06	0.22	0.3	6.21	0.041	0.26139
BeaverCrk_07	0.22	0.31	6.35	0.041	0.32677
BeaverC2_CnMkt	0.22	0.32	6.55	0.042	17.116
BeaverC2_ForeRd	0.22	0.32	6.57	0.042	10.338143
					6

BeaverC2_HWY16 0.23 0.32 6.44 0.043 BeaverC2_Magnol 0.23 0.33 6.47 0.043 BeaverC2_Sprgfld 0.23 0.32 6.56 0.042 BeaverC3_DS_Pear 0.22 0.31 7.22 0.041 BeaverC3_Jackson 0.25 0.36 7.31 0.042 BeaverC3_LSandy 0.23 0.32 7.02 0.042 BeaverC3_Milldal 0.25 0.35 6.75 0.042 BeaverC3_Peairs 0.23 0.32 6.85 0.042	20.842 26.513 25.043 0.38158 1.0266 0.23095
BeaverC2_Sprgfld 0.23 0.32 6.56 0.042 BeaverC3_DS_Pear 0.22 0.31 7.22 0.041 BeaverC3_Jackson 0.25 0.36 7.31 0.042 BeaverC3_LSandy 0.23 0.32 7.02 0.042 BeaverC3_Milldal 0.25 0.35 6.75 0.042	25.043 0.38158 1.0266
BeaverC3_DS_Pear 0.22 0.31 7.22 0.041 BeaverC3_Jackson 0.25 0.36 7.31 0.042 BeaverC3_LSandy 0.23 0.32 7.02 0.042 BeaverC3_Milldal 0.25 0.35 6.75 0.042	0.38158 1.0266
BeaverC3_Jackson 0.25 0.36 7.31 0.042 BeaverC3_LSandy 0.23 0.32 7.02 0.042 BeaverC3_Milldal 0.25 0.35 6.75 0.042	1.0266
BeaverC3_LSandy 0.23 0.32 7.02 0.042 BeaverC3_Milldal 0.25 0.35 6.75 0.042	
BeaverC3_Milldal 0.25 0.35 6.75 0.042	0.23095
_	
BeaverC3_Peairs 0.23 0.32 6.85 0.042	0.73204
	0.80608
BeaverC3_US_LOC 0.25 0.35 7.03 0.042	0.77363
BeaverPondByu_DS	0.30185
BeaverPondByu_US	0.27816
BFountainNP 0.23 0.33 6.79 0.039	27.468
BFountNBr_Boyd 0.3 0.42 11.83 0.011	72.185888 3
BFountNBr_Lee 0.24 0.33 11.34 0.015	32.052819 4
BFountSBr_BF 0.2 0.29 12.02 0.009	17.297
BFountSBr_Gour 0.23 0.32 12.27 0.008	45.999
BFountSBr_US 0.31 0.44 10.21 0.02	53.402
BFountT1_DS 0.22 0.32 7.22 0.035	16.711717
	2
BFountT1_HighInd 0.24 0.34 6.66 0.041	37.865
BFount_BFSBr 0.2 0.28 12.41 0.007	52.696
	35.483
BFount_Bluebon 0.21 0.29 8.42 0.034	33.403
BFount_Bluebon 0.21 0.29 8.42 0.034 BFount_Burbank 0.27 0.39 12.14 0.009	34.035
_	
BFount_Burbank 0.27 0.39 12.14 0.009	34.035
BFount_Burbank 0.27 0.39 12.14 0.009 BFount_BurbankDr 0.22 0.31 7.58 0.034	34.035 34.082
BFount_Burbank 0.27 0.39 12.14 0.009 BFount_BurbankDr 0.22 0.31 7.58 0.034 BFount_ByuManch 0.19 0.26 11.15 0.015	34.035 34.082 6.2996
BFount_Burbank 0.27 0.39 12.14 0.009 BFount_BurbankDr 0.22 0.31 7.58 0.034 BFount_ByuManch 0.19 0.26 11.15 0.015 BFount_ElbowByu 0.17 0.23 11.01 0.016	34.035 34.082 6.2996 31.328
BFount_Burbank 0.27 0.39 12.14 0.009 BFount_BurbankDr 0.22 0.31 7.58 0.034 BFount_ByuManch 0.19 0.26 11.15 0.015 BFount_ElbowByu 0.17 0.23 11.01 0.016 BFount_Nich_DS 0.15 0.22 12.2 0.01	34.035 34.082 6.2996 31.328 29.420
BFount_Burbank 0.27 0.39 12.14 0.009 BFount_BurbankDr 0.22 0.31 7.58 0.034 BFount_ByuManch 0.19 0.26 11.15 0.015 BFount_ElbowByu 0.17 0.23 11.01 0.016 BFount_Nich_DS 0.15 0.22 12.2 0.01 BFount_Nich_US 0.34 0.48 11.96 0.01	34.035 34.082 6.2996 31.328 29.420 72.902
BFount_Burbank 0.27 0.39 12.14 0.009 BFount_BurbankDr 0.22 0.31 7.58 0.034 BFount_ByuManch 0.19 0.26 11.15 0.015 BFount_ElbowByu 0.17 0.23 11.01 0.016 BFount_Nich_DS 0.15 0.22 12.2 0.01 BFount_Nich_US 0.34 0.48 11.96 0.01 BFount_US_Trib 0.17 0.23 10.49 0.02	34.035 34.082 6.2996 31.328 29.420 72.902 7.4834
BFount_Burbank 0.27 0.39 12.14 0.009 BFount_BurbankDr 0.22 0.31 7.58 0.034 BFount_ByuManch 0.19 0.26 11.15 0.015 BFount_ElbowByu 0.17 0.23 11.01 0.016 BFount_Nich_DS 0.15 0.22 12.2 0.01 BFount_Nich_US 0.34 0.48 11.96 0.01 BFount_US_Trib 0.17 0.23 10.49 0.02 BirchCrk_01 0.25 0.35 4.72 0.069	34.035 34.082 6.2996 31.328 29.420 72.902 7.4834 1.2671
BFount_Burbank 0.27 0.39 12.14 0.009 BFount_BurbankDr 0.22 0.31 7.58 0.034 BFount_ByuManch 0.19 0.26 11.15 0.015 BFount_ElbowByu 0.17 0.23 11.01 0.016 BFount_Nich_DS 0.15 0.22 12.2 0.01 BFount_Nich_US 0.34 0.48 11.96 0.01 BFount_US_Trib 0.17 0.23 10.49 0.02 BirchCrk_01 0.25 0.35 4.72 0.069 BlackCrk_01 0.25 0.35 4.93 0.066	34.035 34.082 6.2996 31.328 29.420 72.902 7.4834 1.2671 0.0019691
BFount_Burbank 0.27 0.39 12.14 0.009 BFount_BurbankDr 0.22 0.31 7.58 0.034 BFount_ByuManch 0.19 0.26 11.15 0.015 BFount_ElbowByu 0.17 0.23 11.01 0.016 BFount_Nich_DS 0.15 0.22 12.2 0.01 BFount_Nich_US 0.34 0.48 11.96 0.01 BFount_US_Trib 0.17 0.23 10.49 0.02 BirchCrk_01 0.25 0.35 4.72 0.069 BlackCrk_01 0.25 0.35 4.93 0.066 BlackCrk_02 0.2 0.29 6.39 0.048	34.035 34.082 6.2996 31.328 29.420 72.902 7.4834 1.2671 0.0019691 0.37477
BFount_Burbank 0.27 0.39 12.14 0.009 BFount_BurbankDr 0.22 0.31 7.58 0.034 BFount_ByuManch 0.19 0.26 11.15 0.015 BFount_ElbowByu 0.17 0.23 11.01 0.016 BFount_Nich_DS 0.15 0.22 12.2 0.01 BFount_Nich_US 0.34 0.48 11.96 0.01 BFount_US_Trib 0.17 0.23 10.49 0.02 BirchCrk_01 0.25 0.35 4.72 0.069 BlackCrk_01 0.25 0.35 4.93 0.066 BlackCrk_02 0.2 0.29 6.39 0.048 BlackCrk_03 0.25 0.35 5.18 0.062	34.035 34.082 6.2996 31.328 29.420 72.902 7.4834 1.2671 0.0019691 0.37477 1.0179

BlackCrk_07	0.21	0.29	6.42	0.046	0.35036
BlackCrk_08	0.24	0.33	6.04	0.05	1.5068
BlackCrk_09	0.24	0.33	5.71	0.058	1.3245
BLACKCR_CMB	0.26	0.37	6.45	0.041	0.34810
BLACKCR_HWY412	0.26	0.36	6.55	0.042	0.30503
BlackwtrBT1_BB	0.23	0.33	6.55	0.042	9.1557
BlackwtrBT1_Core	0.23	0.32	6.57	0.042	2.4212
BlackwtrBT1_Mcul	0.22	0.31	6.55	0.041	3.1923
BlackwtrBT2_BB	0.23	0.32	6.53	0.042	1.7124
BlackwtrBT2_DW	0.23	0.32	6.56	0.042	1.3900
BlackwtrBT3_US	0.23	0.32	6.46	0.043	2.2482
BlackwtrB_BBT1	0.23	0.32	6.59	0.041	2.0121
BlackwtrB_BBT2	0.22	0.31	6.56	0.042	1.7963
BlackwtrB_Comite	0.23	0.33	6.57	0.041	12.772
BlackwtrB_McCull	0.22	0.31	6.56	0.042	6.2855
BlackwtrB_US	0.22	0.31	6.48	0.041	0.54737
BlackwtrT3_DS	0.22	0.31	6.53	0.043	1.4630
BluffCrk_AmiteR	0.23	0.32	6.54	0.044	0.73484
BluffCrk_01	0.24	0.33	6.85	0.039	0.65580
BluffCrk_02	0.22	0.31	7.15	0.037	0.52837
BluffCrk_03	0.19	0.27	7.63	0.033	0.75950
BluffCrk_04	0.2	0.28	7.43	0.035	0.17941
BluffCrk_05	0.2	0.28	7.41	0.035	0.40574
BluffCrk_06	0.2	0.28	7.36	0.035	0.64808
BluffCrk_07	0.21	0.3	7.22	0.036	0.59503
BluffSwamp_Gage	0.23	0.32	7.92	0.027	30.022
ByuBraud_HWY30	0.13	0.19	10.83	0.019	16.177
ByuBraud_HWY74	0.11	0.15	12.24	0.01	20.580
ByuBraud_US_LOC	0.18	0.25	10.15	0.029	9.9852
ByuDuplant_LeeDr	0.28	0.39	8.81	0.025	23.718
ByuDuplant_NrDaw	0.26	0.37	8.13	0.03	21.230
ByuManch_Airline	0.21	0.3	6.76	0.038	30.314
ByuManch_BFount	0.19	0.27	9.48	0.022	9.6016
ByuManch_Cotton	0.22	0.32	6.44	0.039	8.3104
ByuManch_Gator	0.19	0.27	10.69	0.029	12.217
ByuManch_NrAmite	0.22	0.31	6.85	0.04	6.5531
ByuManch_NrLiPra	0.23	0.32	6.46	0.04	3.6651
ByuManch_NrMSRiv	0.2	0.28	8.28	0.034	16.124

138

ByuManch_Perkins	0.23	0.32	6.43	0.036	30.170148
					8
ByuManch_Welsh	0.21	0.3	6.41	0.039	25.997
ByuPaul_HWY30	0.18	0.25	10.75	0.034	1.0466
ByuPaul_US_HWY3	0.16	0.23	10.67	0.028	2.9060
0					
ByuPaul_US_LOC	0.16	0.23	11.38	0.023	2.4796
CampCreek_HWY4	0.24	0.34	6.69	0.042	0.83508
2					
ChaneyBr_HWY16	0.23	0.32	6.49	0.041	2.9566
ChinqCan_C01	0.26	0.37	10.85	0.015	0.59205
ChinqCan_C02	0.25	0.35	9.94	0.018	2.8574
ClayCut_Airline	0.3	0.43	9.34	0.025	70.440
ClayCut_AntiochR	0.24	0.33	6.9	0.041	42.587
ClayCut_CalRd	0.26	0.37	7.56	0.036	47.481
ClayCut_Inns	0.24	0.34	6.64	0.041	52.619
ClayCut_JacksB	0.27	0.38	7.92	0.034	52.137
ClayCut_NrAmite	0.23	0.33	6.4	0.041	9.0344
ClayCut_Siegen	0.28	0.4	8.36	0.031	68.083
ClayCut_US_Tiger	0.24	0.34	6.85	0.041	20.025
ClaytonByuT1	0.23	0.32	6.54	0.043	6.9108
ClaytonByu_Bend	0.22	0.31	6.4	0.044	14.714
ClearCrkT1_01	0.25	0.35	6.56	0.042	0.22820
ClearCrkT1_02	0.25	0.34	6.55	0.042	0.25593
ClearCrk_01	0.25	0.36	6.32	0.046	0.26314
ClearCrk_02	0.25	0.35	6.39	0.044	0.68698
ClearCrk_03	0.23	0.32	6.54	0.04	1.1078
ClearCrk_04	0.24	0.34	6.55	0.042	0.79159
ClintonAllenLat	0.23	0.32	6.54	0.042	10.857
ClyellCrkNP	0.24	0.34	6.54	0.042	1.4517
ClyellT9_DS_FL	0.26	0.36	6.57	0.042	3.1219
ClyellT9_FL	0.26	0.36	6.56	0.042	0.74846
Clyell_CB	0.24	0.34	7.03	0.039	1.4374
Clyell_DS_I12	0.25	0.35	6.55	0.042	3.1873
Clyell_DS_LigoLn	0.22	0.31	6.51	0.043	1.2261676
Clyell_FLBlvd	0.25	0.35	6.56	0.042	1.7015
Clyell_I12	0.24	0.34	6.56	0.042	2.3278
Clyell_JoelWatts	0.24	0.34	6.56	0.042	1.1747

01 11 1 1	0.04	0.04	0.54	0.040	4.5000
Clyell_LigoLn	0.24	0.34	6.54	0.042	1.5288
Clyell_LilClyell	0.24	0.34	6.57	0.042	1.0330
Clyell_LodStafrd	0.23	0.33	6.48	0.041	0.80894
Clyell_US_LOC	0.24	0.33	6.57	0.042	0.87043
Clyell_W_Hood	0.24	0.34	6.57	0.042	0.29336
ColtonCrk_HWY16	0.23	0.32	6.39	0.041	19.577
ColyellBay	0.24	0.33	7.41	0.037	1.7259
COMITE_atComite	0.22	0.31	7	0.088	1.3061
COMITE_Baker	0.23	0.33	6.76	0.071	3.1388
COMITE_DenhamS	0.25	0.34	6.47	0.055	13.447
pr					
COMITE_dsJOORR	0.25	0.35	7.17	0.036	10.715
D					
COMITE_dsLA37	0.23	0.32	6.43	0.044	14.171
COMITE_DS_OB	0.22	0.31	5.98	0.084	2.7268
COMITE_HooperRd	0.24	0.34	6.76	0.058	9.4396
COMITE_Hurricane	0.23	0.32	6.55	0.039	8.3836
COMITE_nrComite	0.26	0.37	7.74	0.053	3.6714
COMITE_RR	0.23	0.32	6.43	0.055	3.1842
COMITE_usLA37	0.25	0.36	7.23	0.032	15.661
COMITE_US_OB	0.22	0.3	6.17	0.039	3.5024
COMITE_Zachary	0.23	0.32	6.48	0.056	1.4482
CooperMillB_BC	0.26	0.36	6.5	0.041	2.5463
CooperMillB_Midw	0.24	0.34	6.55	0.042	5.6997
CooperMillB_UWB	0.22	0.31	6.07	0.038	0.88789
CorpCanalNP	0.3	0.42	10.32	0.018	57.073
CorpCanal_Myrtle	0.32	0.45	9.55	0.023	68.716
CorpCanal_Stanfrd	0.34	0.48	10.42	0.013	47.923
CorpCanal_State	0.33	0.46	10.23	0.017	55.738
DarlingCrk_AmiteR	0.2	0.29	7.95	0.041	0.80363
DarlingCrk_01	0.25	0.35	5.29	0.062	0.58469
DarlingCrk_02	0.25	0.34	4.84	0.066	0.49348
DarlingCrk_03	0.25	0.35	4.89	0.066	0.33802
DarlingCrk_04	0.24	0.34	5.42	0.059	0.33313
DarlingCrk_05	0.24	0.34	5.44	0.058	0.59307
DarlingCrk_06	0.24	0.34	6.25	0.059	0.32537
DarlingCrk_07	0.24	0.34	5.23	0.063	0.43465
DarlingCrk_08	0.23	0.33	5.45	0.059	0.73648
	ı	1	1	1	

DarlingCrk_09	0.22	0.3	5.81	0.054	0.85908
DarlingCrk_10	0.23	0.33	5.5	0.057	0.97239
DarlingCrk_11	0.19	0.27	7.02	0.043	0.35708
DarlingCrk 12	0.19	0.26	8.12	0.036	0.68996
DarlingCrk_13	0.2	0.28	7.58	0.041	2.0228
DawsonCr_Bluebon	0.27	0.38	7.97	0.032	38.771
DawsonCr_College	0.3	0.42	9.13	0.026	44.480408
					3
DawsonCr_GovtSt	0.3	0.42	9.04	0.027	56.107
DawsonCr_Hund_D	0.28	0.4	8.35	0.03	35.505
S					
DawsonCr_QuailDr	0.27	0.38	8.23	0.032	41.939
DawsonCr_WardCr	0.28	0.4	8.49	0.03	53.245
DraughnsC_French	0.24	0.34	6.57	0.037	12.639
DraughnsC_GrnSpr	0.23	0.32	6.55	0.041	12.349
DraughnsC_MagBr	0.22	0.32	6.56	0.041	21.651
DuffByu_Jackson	0.23	0.33	6.64	0.042	1.7328
DuffByu_PtHud	0.26	0.36	6.58	0.042	0.29514
DuffB_DS_Jack	0.24	0.33	6.58	0.04	1.0838
DumplinC_DS_RR	0.24	0.34	6.57	0.042	30.589
DumplinC_I12	0.23	0.33	6.46	0.041	18.758
DumplinC_RR	0.22	0.31	6.53	0.042	13.630
DumplinC_US_LOC	0.22	0.31	6.55	0.042	14.160
DunnCrk_01	0.26	0.36	6.65	0.043	0.0148556
DunnCrk_02	0.23	0.32	6.9	0.041	0.38838
DunnCrk_03	0.26	0.36	5.59	0.055	0.79527
DunnCrk_04	0.25	0.36	5.57	0.055	0.56951
EastForkAmite_01	0.25	0.35	6.43	0.043	1.0971
EastForkAmite_02	0.27	0.38	6.16	0.048	0.54958
EastForkAmite_03	0.26	0.37	5.83	0.053	0.60027
EastForkAmite_04	0.26	0.37	5.87	0.051	0.46100
EFDumplin_Corbin	0.22	0.31	6.55	0.042	5.3992
EFDumplin_RR	0.23	0.32	6.52	0.042	19.431
ELatCypB_Lavey	0.26	0.37	6.57	0.042	26.556
ELatCypB_LCB	0.23	0.33	6.63	0.041	19.207
ElbowBayou	0.14	0.2	10.91	0.015	4.1475
ElbowByu_Burbank	0.18	0.25	10.33	0.022	6.4746

ENGINEERDEPOT	0.25	0.35	6.73	0.041	32.481542
DS					9
ENGINEERDEPOT_	0.28	0.39	7.8	0.034	48.736
US					
FeldersB_BrownRd	0.25	0.35	6.57	0.042	5.0476
FeldersB_DSJMay	0.24	0.34	6.6	0.042	6.8146
FeldersB_WC	0.23	0.33	7.18	0.042	20.313603
					9
FlanaganByu_SC	0.24	0.33	6.62	0.042	1.1087
FlanaganByu_01	0.24	0.34	7.33	0.041	0.10746
FlatLake	0.15	0.22	9.86	0.014	1.6352
GatorByu_Gage	0.17	0.24	9.64	0.019	6.6041
GatorByu_USGage	0.14	0.2	11.21	0.015	6.0133
GraysCrkBr_BMcD	0.25	0.36	6.55	0.042	34.789
GraysCrkBr_Dunn	0.24	0.34	6.3	0.046	21.193
GraysCrkBr_I12	0.24	0.33	6.57	0.042	28.892
GraysCrkBr_RR	0.25	0.36	6.45	0.041	24.885
GraysCrkBr_USI12	0.24	0.34	6.57	0.042	15.633
GraysCrkLat_RR	0.23	0.33	6.45	0.043	32.240
GraysCrk_Hwy1033	0.24	0.34	6.49	0.043	5.0771
GraysCrk_HWY16	0.25	0.35	6.52	0.042	13.373
GraysCrk_I12	0.24	0.34	6.57	0.042	25.698
GraysCrk_Julban	0.22	0.31	5.83	0.037	15.817
GraysCrk_NrAmite	0.24	0.34	6.53	0.042	3.9243
GraysCrk_RR	0.24	0.34	6.56	0.042	29.655
GraysCrk_US	0.25	0.35	6.55	0.042	31.059
GraysCrk_WaxD	0.24	0.33	6.57	0.042	24.438
HannaC_PrideBar	0.21	0.3	7.19	0.037	0.39341
HareLat_Airline	0.26	0.37	7.5	0.036	44.206
HareLat_OldHmd	0.26	0.37	7.32	0.034	49.169
HendByu_DSPtVinc	0.24	0.34	6.82	0.032	8.8496
HendByu_HWY431	0.22	0.31	7.93	0.029	6.6224
HendByu_Joboy	0.24	0.33	6.57	0.042	25.642
HendByu_NrPtVinc	0.24	0.34	6.52	0.039	22.903462
HendByu_US_Timbr	0.24	0.34	6.57	0.036	18.821041
					3
HogBayou_BC	0.26	0.37	6.53	0.042	0.0410698
HoneyCut_East	0.26	0.37	7.02	0.039	46.597

HoneyCut_NrAmite	0.26	0.37	7.12	0.038	28.236
HoneyCut_West	0.27	0.38	6.95	0.04	45.153
HornsbyCrk_CnMkt	0.24	0.34	6.52	0.042	0.87147
HornsbyCrk DSCan	0.25	0.35	6.56	0.042	1.2479
HornsbyCrk FLBd	0.24	0.34	6.55	0.042	4.7545
HornsbyCrk_HCT1	0.23	0.32	6.48	0.043	1.9965
HornsbyCrk_HCT3	0.23	0.32	6.55	0.042	0.80977
HornsbyCT1_Corbn	0.23	0.32	6.53	0.042	1.2429
HornsbyCT3_Corbn	0.22	0.31	6.49	0.043	0.83705
HornsbyCT3_HC	0.22	0.31	6.53	0.042	1.1953
HornsbyC_I12	0.24	0.34	6.5	0.041	5.8602
HubByu_DS_GS_P	0.22	0.31	6.53	0.041	1.5891
H ,					
HubByu_GrnwelSpr	0.22	0.31	6.52	0.042	4.7680
HubByu_GS_PtHud	0.23	0.32	6.56	0.041	1.6434
HubByu_Peairs	0.22	0.31	6.47	0.043	0.17180
HunterByu_01	0.2	0.28	7.58	0.034	0.11622
HunterByu_02	0.2	0.28	7.46	0.034	0.20264
HunterByu_03	0.22	0.31	6.96	0.04	0.11391
HunterByu_04	0.21	0.29	7.41	0.034	0.72964
HunterByu_05	0.21	0.29	7.25	0.036	0.42069
HURRICANE_dsJO	0.25	0.36	7.2	0.038	37.343194
OR					1
HURRICANE_HOW	0.28	0.39	7.77	0.035	39.509431
ELL					5
HURRICANE_Joor	0.27	0.38	8.02	0.034	33.617
HURRICANE_Presc	0.26	0.36	7.19	0.039	37.593
t					
HURRICANE_Wildw	0.27	0.37	7.66	0.036	47.516567
d					5
IndianByu_PtHud	0.25	0.35	7.5	0.042	1.0859
IndianByu_UWB	0.24	0.34	7.54	0.042	0.89337
JacksB_Claycut	0.25	0.35	6.73	0.041	51.079634
					5
JacksB_ParkFor	0.3	0.42	8.4	0.031	55.294
JoinerCrk_01	0.19	0.26	6.46	0.048	0.45325
JoinerCrk_02	0.25	0.35	4.83	0.067	0.15623
JoinerCrk_03	0.24	0.34	4.84	0.067	0.75277
JoinerCrk_04	0.25	0.35	4.7	0.069	1.2911

JoinerCrk 05	0.23	0.32	5.47	0.059	0.45938
JoinerCrk 06	0.22	0.31	6.11	0.054	0.62268
JonesBayou	0.24	0.34	7.59	0.041	4.4986
JonesCr_Airline	0.34	0.48	10.81	0.017	70.532
JonesCr FLBlvd	0.28	0.39	8.35	0.032	49.452
JonesCr Mont	0.28	0.4	8.71	0.029	55.750
JonesCr_NrAmite	0.23	0.33	6.34	0.036	28.484
JonesCr OldHamd	0.27	0.38	7.51	0.036	41.540
JonesCr_ONealLn	0.25	0.36	6.89	0.035	42.330
JonesCr_WeinerCr	0.27	0.39	7.73	0.034	46.875
KnoxBr_Firewood	0.26	0.37	7.07	0.036	53.614348
KnoxBr_ONealLn	0.24	0.34	6.47	0.041	39.615
LCypByu_Comite	0.25	0.35	7.11	0.039	13.959
LCypByu_DS_Lavey	0.21	0.3	6.9	0.039	8.9461
LCypByu_GBL	0.27	0.38	8.58	0.033	25.915
LCypByu_Hooper	0.23	0.33	7.48	0.041	11.256
LCypByu_Lavey	0.24	0.34	7.21	0.04	20.359
LCypByu_Thomas	0.24	0.33	7.3	0.041	8.1149
LCypByu_US_SL	0.25	0.35	7.02	0.041	16.664
LilClyell_DS_I12	0.24	0.34	7.68	0.039	4.8898
LilClyell_I12	0.24	0.33	6.51	0.042	7.5698
LilClyell_L01	0.25	0.36	6.53	0.043	8.6743
LilClyell_Prloux	0.22	0.31	8.22	0.042	7.8638
LilClyell_Range	0.23	0.33	6.53	0.043	23.691
LilClyell_RangLn	0.24	0.33	7.35	0.042	1.7862
LilClyell_Satsu	0.24	0.34	6.89	0.042	3.2243
LilSndyC2_DS_Jac	0.22	0.31	7.32	0.041	0.90336
LilSndyC2_DS_Mil	0.23	0.32	6.64	0.041	3.0768
LilSndyC2_DS_Per	0.23	0.32	6.46	0.041	0.75879
LilSndyC2_Jack	0.23	0.32	6.62	0.041	0.63725
LilSndyC2_Lib	0.23	0.32	6.33	0.044	0.54631
LilSndyC2_Milld	0.22	0.31	6.68	0.042	1.0885
LilSndyC2_Peairs	0.23	0.32	6.59	0.041	1.1749
LilSndyC2_US_Jac	0.23	0.33	6.89	0.041	0.79547
LilSndyC2_US_LOC	0.21	0.3	7.32	0.036	0.38812
LilSndyC2_Wind	0.23	0.32	6.48	0.043	0.58583
LittleSandyCrk_01	0.2	0.28	7.42	0.035	0.86589
LittleSandyCrk_02	0.2	0.29	7.33	0.035	0.81863

LittleSandyCrk_03	0.19	0.27	7.57	0.033	0.66558
LittleSandyCrk_04	0.2	0.28	7.53	0.034	0.39079
LittleSandyCrk_05	0.2	0.28	7.46	0.035	0.30085
LittleSandyCrk_06	0.21	0.29	7.14	0.037	0.29685
LivelyBT_FL	0.29	0.41	8.32	0.032	56.229
LivelyBT_LB	0.27	0.38	7.21	0.039	50.357
LivelyB_FLBlvd	0.28	0.39	7.72	0.035	39.952
LivelyB_HoneyCut	0.28	0.39	7.6	0.036	43.403
LivelyB_LBT	0.26	0.37	7.36	0.037	55.135
LivelyB_Pvt	0.25	0.36	6.57	0.042	10.351
LongSlashBranch	0.24	0.34	6.32	0.046	41.730
LSU_NP_MaySt	0.25	0.35	7.15	0.029	34.950
LSU_NP_Stanfrd	0.16	0.22	4.76	0.019	19.399
LWhiteByu_Comite	0.25	0.35	7.25	0.041	15.384
LWhiteByu_Pettit	0.23	0.33	7.57	0.041	5.8383
LWhiteByu_US_Pet	0.24	0.34	7.77	0.041	8.9864
MidClyellT3	0.23	0.32	6.57	0.042	4.7465
MidClyellT5_CnMk	0.23	0.32	6.52	0.042	7.3276483
MidClyellT5_MC	0.23	0.33	6.55	0.042	4.3389
MidClyellT5_Sprg	0.22	0.31	6.53	0.042	2.8569
MidClyellT6_GalG	0.24	0.33	6.55	0.042	18.635
MidClyellT6_MC	0.22	0.31	6.54	0.042	5.2490
MidClyell_CB	0.25	0.35	6.94	0.04	1.5404
MidClyell_CnMkt	0.24	0.33	6.5	0.043	1.7291
MidClyell_FLBlvd	0.23	0.32	6.57	0.042	5.8383
MidClyell_HoodRd	0.24	0.34	6.56	0.042	0.88321
MidClyell_I12	0.24	0.34	6.59	0.041	9.6887
MidClyell_MCT1	0.23	0.32	6.5	0.043	1.4727
MidClyell_MCT3	0.23	0.32	6.57	0.042	1.3646
MidClyell_MCT5	0.24	0.34	6.56	0.042	6.0060
MidClyell_MCT6	0.23	0.32	6.55	0.042	7.6729
MidClyell_TylrBy	0.24	0.34	6.55	0.042	3.0558
MidClyell_US_LOC	0.21	0.29	7.25	0.04	1.1465
MidClyell_WeissR	0.23	0.32	6.54	0.042	0.77599
MillCrk_CarsonRd	0.23	0.32	6.51	0.041	1.9742
MillCrk_MahoneyRd	0.2	0.28	7.47	0.034	0.55722
MillCrk_PrideBar	0.22	0.31	6.36	0.039	1.0121
MillC_SandyC	0.23	0.32	6.57	0.042	0.83369

,					
MillersCT_I12	0.24	0.34	6.57	0.042	26.636
MillersCT_MC	0.24	0.33	6.45	0.041	36.358
MillersCT_UnT	0.24	0.34	6.55	0.043	44.669
MillersC_Julban	0.25	0.35	6.54	0.042	14.935
MolerB_CnMkt	0.22	0.31	6.56	0.042	2.0932
MolerB_Springfld	0.22	0.31	6.55	0.042	7.5495
MolerB_WC	0.21	0.3	6.5	0.041	8.2659
MuddyCrk_Henry	0.25	0.35	6.65	0.041	31.573
MuddyCrk_HWY42	0.24	0.34	6.6	0.04	19.811426
					9
MuddyCrk_LilPra	0.25	0.35	6.52	0.039	20.079
MuddyCrk_NrManch	0.25	0.35	6.71	0.038	14.587
MuddyCrk_NrOakGr	0.25	0.36	6.57	0.037	20.085246
					3
NBrWardsCr_atBR	0.28	0.39	8.14	0.032	47.344
NBrWardsCr_FL	0.33	0.46	10.08	0.021	64.625
NBrWardsCr_Hare	0.31	0.43	9.44	0.025	58.947
NBrWardsCr_I10	0.28	0.39	8.07	0.033	46.571
NewR_Maurepas	0.29	0.41	11.78	0.006	0.0227242
ROBERTCN_dsJOO	0.23	0.32	6.88	0.041	10.771
R					
ROBERTCN_Grnwe	0.25	0.35	7.49	0.037	36.330
II					
ROBERTCN_Joor	0.23	0.32	6.87	0.042	11.061
ROBERTCN_T	0.24	0.33	6.74	0.041	36.252
ROBERTCN_US_L	0.26	0.36	7.06	0.039	30.201
OC					
RobertsByu_01	0.2	0.28	7.54	0.033	1.3567
RobertsByu_02	0.19	0.27	7.62	0.032	0.15016
RobertsByu_03	0.2	0.27	7.58	0.033	0.22279
RobertsByu_04	0.2	0.28	7.25	0.036	0.18000
SandyCrk_01	0.24	0.34	6.78	0.04	1.0143
SandyCrk_02	0.24	0.33	6.77	0.039	1.3716
SandyCrk_03	0.22	0.3	7.05	0.036	0.23185
SandyCrk_04	0.25	0.35	6.55	0.042	0.25371
SandyCrk_05	0.25	0.35	6.55	0.042	0.91705
0 10100		0.00	6.64	0.041	0.81362
SandyCrk_06	0.24	0.33	0.04	0.041	0.01002
SandyCrk_06 SandyCrk_07	0.24	0.33	6.31	0.044	0.88330

SandyCrk_09	0.24	0.34	6.52	0.043	0.17275
SandyCrk_10	0.21	0.3	6.37	0.041	0.68851
SandyCrk_11	0.25	0.35	6.47	0.043	0.0819601
SandyCrk_12	0.22	0.31	6.62	0.041	1.1217
SandyCrk_13	0.22	0.31	6.89	0.041	0.60896
SandyCrk_14	0.21	0.29	7.41	0.036	0.41164
SandyCrk_15	0.21	0.3	7.84	0.039	0.0979339
SandyCrk_16	0.2	0.28	7.43	0.035	0.24939
SandyCrk_17	0.22	0.31	6.79	0.04	0.12967
SandyCrk_18	0.22	0.31	6.61	0.042	0.61230
SandyCrk_19	0.21	0.3	7.08	0.038	0.24765
SandyCrk_20	0.22	0.31	7	0.039	0.60173
SandyC_AlphonFor	0.22	0.3	5.87	0.05	0.45016
SandyC_BeaverPnd	0.23	0.33	6.5	0.04	1.2173
SandyC_FB	0.24	0.34	6.48	0.043	0.20566
SandyC_GrnwelSpr	0.23	0.32	6.37	0.043	1.8158
SandyC_MillC	0.23	0.33	6.51	0.042	0.63514
SandyC_PrideBay	0.23	0.33	6.44	0.041	2.1578
SandyC_StnyPtBur	0.23	0.32	6.47	0.041	0.95215
SandyC_UN3SC	0.25	0.35	6.51	0.043	0.28040
SandyRun_01	0.25	0.35	4.78	0.068	0.64430
SandyRun_02	0.24	0.34	5.07	0.064	0.56290
SandyRun_03	0.22	0.31	5.77	0.055	0.87739
SandyRun_04	0.19	0.27	6.41	0.048	0.86224
SandyRun_05	0.2	0.29	6.28	0.05	0.44846
SandyRun_06	0.2	0.28	6.47	0.048	0.62503
SandyRun_07	0.24	0.33	5.55	0.06	0.15926
SandyRun_08	0.22	0.31	6.74	0.045	0.18695
ScalousCr	0.21	0.29	7.46	0.036	0.36214
SCanal_Dyer	0.23	0.32	8.61	0.042	2.6231
SCanal_Plank	0.24	0.34	7.4	0.041	1.4444
ShoeCT1_SC	0.24	0.34	6.56	0.042	24.160
ShoeCT1_US_LOC	0.25	0.35	7.09	0.039	23.794
ShoeC_Comite	0.24	0.34	6.57	0.037	11.666
ShoeC_DS_Hooper	0.23	0.32	6.52	0.042	16.075
ShoeC_Gurney	0.25	0.35	6.49	0.041	7.5678
ShoeC_Hooper	0.26	0.36	7.24	0.038	14.541
ShoeC_Pecos	0.24	0.34	6.59	0.039	14.807
t-		•			

ShoeC_SCT1	0.23	0.32	6.73	0.041	10.928
SouthCanal Div	0.23	0.33	8.5	0.04	7.3115
SouthCanal HWY19	0.24	0.33	9.11	0.039	10.635
SOUTHLATERAL	0.25	0.35	6.72	0.042	27.981
SouthSandyRun_01	0.25	0.35	4.64	0.042	0.0017219
SouthSandyRun_02	0.25	0.35	5.14	0.069	0.0017219
	0.25	0.35	5.02	0.062	0.79920
SouthSandyRun_03		0.35	5.02		1.6888
SouthSandyRun_04	0.25			0.064	
SpillersCT2_	0.25	0.35	7.33	0.037	1.9036
SpillersCT2_SC	0.23	0.32	6.52	0.038	3.1768
SpillersCT2_Wei	0.23	0.33	6.92	0.039	4.2960
SpillersCT2_3	0.22	0.31	6.3	0.048	3.3285
SpillersC_DS_Sim	0.22	0.31	6.55	0.042	3.4475
SpillersC_Hess	0.21	0.3	5.91	0.051	4.6047
SpillersC_HWY16	0.23	0.33	6.38	0.043	8.4231
SpillersC_Sims	0.21	0.3	6.13	0.048	0.70794
SpillersC_WeissRd	0.22	0.3	6.18	0.048	1.1227
StoneByu_01	0.23	0.32	6.12	0.039	0.95509
StoneByu_02	0.25	0.35	6.53	0.042	1.4037
StoneByu_03	0.23	0.32	6.84	0.039	1.0589
StoneByu_04	0.2	0.29	7.41	0.035	0.26012
StoneByu_05	0.19	0.26	6.99	0.032	0.59025
SUB_BLACKCRK_0 1	0.23	0.33	6.39	0.041	1.0418
SUB_BLACKCRK_0 2	0.24	0.34	6.4	0.041	1.6049
SUB_BLACKCRK_0	0.25	0.35	6.54	0.042	0.20261
SUB_BLACKCRK_0 4	0.25	0.35	6.5	0.041	0.33370
SUB_BLACKCRK_0 5	0.26	0.36	6.52	0.042	0.39154
SUB_COMITENP_0 1	0.26	0.37	6.57	0.042	1.5156
SUB_COMITENP_0 2	0.25	0.35	6.41	0.049	1.5850
SUB COMITE 01	0.26	0.37	6.64	0.046	1.1991
SUB COMITE 02	0.21	0.3	6.98	0.037	0.36478
SUB COMITE 03	0.23	0.32	6.69	0.041	0.20981
		1	L	1	L

SUB_COMITE_04	0.23	0.33	6.58	0.043	0.0857510
SUB COMITE 05	0.24	0.34	6.56	0.042	0.26831
SUB_COMITE_06	0.22	0.31	6.98	0.039	0.14066
SUB_COMITE_07	0.21	0.29	7.21	0.036	0.21030
SUB_COMITE_09	0.21	0.29	7.05	0.036	0.5289632
SUB_COMITE_10	0.23	0.32	6.58	0.043	0.53244
SUB_COMITE_12	0.2	0.29	6.38	0.037	0.0078490
SUB_COMITE_13	0.22	0.31	6.95	0.038	1.4115
SUB_COMITE_14	0.22	0.31	6.87	0.039	1.2635
SUB_COMITE_15	0.21	0.3	6.94	0.037	0.52291
SUB_COMITE_18	0.22	0.3	6.4	0.039	0.39953
SUB_COMITE_19	0.23	0.33	6.63	0.041	0.43824
SUB_COMITE_21	0.22	0.31	6.58	0.055	0.51890
SUB_COMITE_22	0.22	0.31	6.84	0.05	0.53337
SUB_COMITE_23	0.24	0.34	6.22	0.085	0.59344
SUB_COMITE_25	0.23	0.32	6.19	0.148	0.78046
SUB_COMITE_26	0.23	0.33	6.44	0.111	0.50065
SUB_DOYLEBAYO	0.25	0.35	6.57	0.042	0.81833
U_01					
SUB_DOYLEBAYO	0.24	0.34	6.55	0.042	0.22393
U_02					
SUB_DOYLEBAYO	0.26	0.36	6.56	0.042	0.47093
U_03					
SUB_DOYLEBAYO	0.25	0.35	6.57	0.042	0.44875
U_05					
SUB_DOYLEBAYO	0.24	0.34	7.17	0.041	0.59077
U_06					
SUB_DOYLEBAYO	0.25	0.35	6.5	0.04	1.3423
U_07					
SUB_DOYLEBAYO	0.25	0.35	6.81	0.041	1.3841
U_08					
SUB_DOYLENP1_0	0.25	0.36	6.56	0.042	10.183
1				0.010	2 - 2 - 2 - 4
SUB_DOYLENP1_0	0.25	0.35	6.52	0.042	0.56884
2	0.0	0.00	7.44	0.004	0.45440
SUB_FISHERBAYO	0.2	0.29	7.44	0.034	0.15143
U_01	0.0	0.00	7.40	0.004	0.00500
SUB_FISHERBAYO	0.2	0.28	7.43	0.034	0.28530
U_02					

SUB_FISHERBAYO	0.2	0.29	7.38	0.034	0.24757
U_03 SUB_HOGBAYOU_	0.25	0.35	6.53	0.042	0.33751
01	0.20	0.00	0.00	0.012	0.00701
SUB_HOGBAYOU_	0.25	0.35	6.55	0.042	0.21282
02					
SUB_IRONBAYOU_ 01	0.24	0.34	6.56	0.042	0.99105
SUB_IRONBAYOU_ 02	0.24	0.34	6.55	0.042	0.75138
SUB_IRONBAYOU_ 03	0.26	0.36	6.53	0.042	0.82828
SUB_IRONBAYOU_ 04	0.26	0.36	6.54	0.042	0.43611
SUB_KNIGHTONBA YOU 01	0.2	0.28	7.38	0.035	0.45135
SUB_KNIGHTONBA YOU 02	0.2	0.28	7.35	0.036	0.10101
SUB_KNIGHTONBA YOU_03	0.2	0.28	7.45	0.034	0.23569
SUB_KNIGHTONBA YOU 04	0.22	0.3	6.78	0.04	0.0915768
SUB_LEWISCRK_0	0.21	0.3	7.09	0.037	6.4559
SUB_LEWISCRK_0 2	0.21	0.3	7.05	0.039	8.2446
SUB_LEWISCRK_0	0.21	0.3	6.82	0.039	1.1490
SUB_LITCOMITE_0 1	0.23	0.32	7.99	0.042	0.59420
SUB_LITCOMITE_0 2	0.23	0.32	6.78	0.041	0.0287793
SUB_LITCOMITE_0 3	0.24	0.34	6.63	0.041	0.56850
SUB_LITREDWOO D_01	0.22	0.31	6.12	0.039	0.68200
SUB_LITREDWOO D_02	0.24	0.33	6.49	0.041	0.17075

SUB_LITREDWOO D 03	0.24	0.33	6.66	0.041	0.23111
SUB_LITREDWOO	0.22	0.3	6.83	0.039	0.30272
D_04					
SUB_LITREDWOO	0.2	0.28	7.45	0.034	0.5411356
D_05					
SUB_MONAHANBA	0.2	0.28	7.5	0.033	0.85356
YOU_01					
SUB_MONAHANBA	0.2	0.28	7.29	0.034	0.41186
YOU_02					
SUB_PRETTYCRK_	0.23	0.32	7	0.039	0.36189
01					
SUB_PRETTYCRK_	0.22	0.31	7.04	0.039	0.30823
02					
SUB_PRETTYCRK_	0.22	0.31	7.01	0.037	0.38800
03					
SUB_PRETTYCRK_	0.2	0.28	7.48	0.034	0.0727358
04					
SUB_PRETTYCRK_	0.24	0.34	6.37	0.046	0.76929
05					
SUB_PRETTYCRK_	0.21	0.29	7.1	0.036	0.42798
06					
SUB_PRETTYCRK_	0.22	0.31	6.99	0.039	0.70143
07					
SUB_PRETTYCRK_	0.23	0.32	6.46	0.041	8.5520
08					
SUB_PRETTYCRK_	0.21	0.29	5.86	0.038	0
09					
SUB_REDWOODC	0.19	0.27	7.61	0.032	1.5693
RK_01					
SUB_REDWOODC	0.21	0.29	7.05	0.036	2.2165
RK_02					
SUB_REDWOODC	0.21	0.3	7.25	0.036	0.61863
RK_03					
SUB_REDWOODC	0.22	0.31	6.82	0.039	0.29699
RK_04					
SUB_REDWOODC	0.24	0.34	6.56	0.042	0.0899121
RK_05					

SUB_REDWOODC	0.22	0.32	6.93	0.038	1.7682
RK_06					
SUB_REDWOODC	0.23	0.32	6.63	0.04	0.25317
RK_08					
SUB_REDWOODC	0.2	0.28	7.39	0.034	0.84067
RK_09					
SUB_REDWOODC	0.23	0.32	6.85	0.039	0.25623
RK_10					
SUB_REDWOODC	0.25	0.35	6.59	0.041	0.70533
RK_11					
SUB_REDWOODC	0.23	0.32	6.94	0.038	0.48680
RK_12					
SUB_REDWOODC	0.24	0.33	6.55	0.042	0.44197
RK_13					
SUB_REDWOODC	0.24	0.34	6.55	0.042	0.34258
RK_14					
SUB_REDWOODC	0.25	0.35	6.77	0.041	0.20187
RK_15					
SUB_REDWOODC	0.24	0.34	6.49	0.042	0.0182202
RK_16					
SUB_REDWOODC	0.25	0.35	6.88	0.041	0.25766
RK_17					
SUB_REDWOODC	0.24	0.34	6.47	0.042	1.7623
RK_18					
SUB_REDWOODN	0.25	0.35	6.55	0.042	0.0670558
Р					
SUB_SCHLEIBAYO	0.2	0.29	7.47	0.034	1.1456
U_01					
SUB_SCHLEIBAYO	0.21	0.3	7.21	0.036	0.6438293
U_02					
SUB_SCHLEIBAYO	0.21	0.29	7.11	0.037	0.58500
U_03					
SUB_SESSIONSBA	0.2	0.28	7.54	0.034	0.22409
YOU_NP					
SUB_SESSIONSBA	0.2	0.28	7.42	0.034	0.0947252
YOU_01					
SUB_SESSIONSBA	0.21	0.29	7.25	0.037	0.51677
YOU_02					

YOU_03 SUB_SESSIONSBA 0.22 0.31 6.49 0.043 0.54576 YOU_04 SUB_UNT_LEWISC 0.2 0.28 7.49 0.034 5.6627 RK SUB_UNT3_REDW 0.26 0.37 6.57 0.042 2.6908 OOD_1 SUB_UNT3_REDW 0.26 0.36 6.57 0.042 0.27021 OOD_2 SUB_UN_UN3_REDW 0.26 0.37 6.57 0.042 0.2807 WOOD SUB_UN_UN3_RED 0.26 0.37 6.57 0.042 2.8807 WOOD_1 SUB_UN_UN4_RED 0.25 0.35 6.56 0.042 0.33138 WOOD_1 SUB_UN_UN4_RED 0.25 0.36 6.56 0.042 0.40056 WOOD_2 SUB_UN3_REDWO 0.25 0.35 6.96 0.041 0.93988 SUB_UN4_REDWO 0.25 0.35 6.96 0.041 0.93988 SUB_UN4_REDWO 0.25 0.35 6.49 0.042 0.61594 OD_01 <th>SUB_SESSIONSBA</th> <th>0.21</th> <th>0.29</th> <th>7.11</th> <th>0.037</th> <th>0.15278</th>	SUB_SESSIONSBA	0.21	0.29	7.11	0.037	0.15278
YOU_04 Color Color <t< td=""><td>_</td><td>0.00</td><td>0.04</td><td>0.40</td><td>0.040</td><td>0.54570</td></t<>	_	0.00	0.04	0.40	0.040	0.54570
SUB_UNT_LEWISC 0.2 0.28 7.49 0.034 5.6627 RK SUB_UNT3_REDW 0.26 0.37 6.57 0.042 2.6908 OOD_1 0.26 0.36 6.57 0.042 0.27021 OOD_2 SUB_UNT3_RED 0.26 0.37 6.57 0.042 2.8807 WOOD SUB_UN_UNA_RED 0.25 0.35 6.56 0.042 0.33138 WOOD_1 SUB_UN_UN4_RED 0.25 0.36 6.56 0.042 0.40056 WOOD_2 SUB_UN_UN4_RED 0.25 0.36 6.5 0.042 0.40056 WOOD_2 SUB_UN_UN4_RED 0.24 0.33 6.5 0.043 0.25333 WOD_02 SUB_UN4_REDWO 0.25 0.35 6.96 0.041 0.93988 OD_01 SUB_UN4_REDWO 0.25 0.35 6.49 0.042 0.61594 OD_02 SUB_WALNUTBR_ 0.25 0.35 6.56 0.042 0.21045 SUB_WEALNUTBR_	-	0.22	0.31	6.49	0.043	0.54576
RK SUB_UNT3_REDW 0.26 0.37 6.57 0.042 2.6908 OOD_1 SUB_UNT3_REDW 0.26 0.36 6.57 0.042 0.27021 OOD_2 SUB_UN_UN3_RED 0.26 0.37 6.57 0.042 2.8807 WOOD SUB_UN_UN4_RED 0.25 0.35 6.56 0.042 0.33138 WOOD_1 SUB_UN_UN4_RED 0.25 0.36 6.56 0.042 0.40056 WOOD_2 SUB_UN_UN4_RED 0.24 0.33 6.5 0.043 0.25333 WOOD_3 SUB_UNA_REDWO 0.25 0.35 6.96 0.041 0.93988 OD_02 SUB_UN4_REDWO 0.25 0.36 6.57 0.042 1.0741 OD_01 SUB_UN4_REDWO 0.25 0.35 6.49 0.042 0.61594 SUB_UNA_REDWO 0.25 0.35 6.56 0.042 0.21045 OD_02 SUB_WALNUTBR_ 0.25 0.35 6.56 0.042 0.21045	_					
SUB_UNT3_REDW OOD_1 0.26 0.37 6.57 0.042 2.6908 SUB_UNT3_REDW OOD_2 0.26 0.36 6.57 0.042 0.27021 SUB_UN_UNJ_RED WOOD 0.26 0.37 6.57 0.042 2.8807 WOOD SUB_UN_UNJ_RED WOOD_1 0.25 0.35 6.56 0.042 0.33138 WOOD_1 0.25 0.36 6.56 0.042 0.40056 WOOD_2 0.24 0.33 6.5 0.042 0.40056 WOOD_2 0.24 0.33 6.5 0.043 0.25333 WOOD_3 0.25 0.35 6.96 0.041 0.93988 OD_02 0.2B_UN4_REDWO 0.25 0.36 6.57 0.042 1.0741 SUB_UN4_REDWO 0.25 0.36 6.57 0.042 0.61594 OD_02 0.02 0.35 6.56 0.042 0.21045 01 0.02 0.35 6.56 0.042 0.21045 01 0.02 0.35		0.2	0.28	7.49	0.034	5.6627
OOD_1 SUB_UNT3_REDW O.26 0.36 6.57 0.042 0.27021 OOD_2 SUB_UN_UN3_RED WOOD 0.26 0.37 6.57 0.042 2.8807 WOOD SUB_UN_UN4_RED 0.25 0.35 6.56 0.042 0.33138 WOOD_1 SUB_UN_UN4_RED 0.25 0.36 6.56 0.042 0.40056 WOOD_2 SUB_UN_UN4_RED 0.24 0.33 6.5 0.043 0.25333 WOOD_3 SUB_UN_JUN4_RED 0.25 0.35 6.96 0.041 0.93988 OD_02 SUB_UN4_REDWO 0.25 0.36 6.57 0.042 1.0741 OD_01 SUB_UN4_REDWO 0.25 0.36 6.57 0.042 1.0741 SUB_UN4_REDWO 0.25 0.35 6.49 0.042 0.61594 OD_02 SUB_WALNUTBR_ 0.25 0.35 6.56 0.042 0.21045 O1 SUB_WALNUTBR_ 0.24 0.34 6.38 0.042 0.21054						
OOD_2 SUB_UN_UN3_RED 0.26 0.37 6.57 0.042 2.8807 WOOD SUB_UN_UN4_RED 0.25 0.35 6.56 0.042 0.33138 WOOD_1 SUB_UN_UN4_RED 0.25 0.36 6.56 0.042 0.40056 WOOD_2 SUB_UN_UN4_RED 0.24 0.33 6.5 0.043 0.25333 WOOD_3 SUB_UN3_REDWO 0.25 0.35 6.96 0.041 0.93988 OD_02 SUB_UN4_REDWO 0.25 0.36 6.57 0.042 1.0741 OD_01 SUB_UN4_REDWO 0.25 0.35 6.49 0.042 0.61594 OD_02 SUB_WALNUTBR_ 0.25 0.35 6.56 0.042 0.21045 O1 SUB_WALNUTBR_ 0.25 0.35 6.56 0.042 0.21045 O2 SUB_WALNUTBR_ 0.24 0.34 6.38 0.043 0.29968 O3 SUB_WFRKLITCO 0.22 0.3 8.29 0.042 0.33878		0.26	0.37	6.57	0.042	2.6908
SUB_UN_UN3_RED 0.26 0.37 6.57 0.042 2.8807 WOOD SUB_UN_UN4_RED 0.25 0.35 6.56 0.042 0.33138 WOOD_1 SUB_UN_UN4_RED 0.25 0.36 6.56 0.042 0.40056 WOOD_2 SUB_UN_UN4_RED 0.24 0.33 6.5 0.043 0.25333 WOOD_3 SUB_UN3_REDWO 0.25 0.35 6.96 0.041 0.93988 OD_02 SUB_UN4_REDWO 0.25 0.36 6.57 0.042 1.0741 OD_01 SUB_UN4_REDWO 0.25 0.35 6.49 0.042 0.61594 OD_02 SUB_WALNUTBR_ 0.25 0.35 6.56 0.042 0.21045 O1 SUB_WALNUTBR_ 0.25 0.35 6.56 0.042 0.21054 O2 SUB_WALNUTBR_ 0.24 0.34 6.38 0.042 0.21054 O3 SUB_WFRKLITCO 0.22 0.31 6.99 0.04 0.33878		0.26	0.36	6.57	0.042	0.27021
WOOD SUB_UN_UN4_RED 0.25 0.35 6.56 0.042 0.33138 WOOD_1 SUB_UN_UN4_RED 0.25 0.36 6.56 0.042 0.40056 WOOD_2 SUB_UN_UN4_RED 0.24 0.33 6.5 0.043 0.25333 WOOD_3 SUB_UN3_REDWO 0.25 0.35 6.96 0.041 0.93988 OD_02 SUB_UN4_REDWO 0.25 0.36 6.57 0.042 1.0741 OD_01 SUB_UN4_REDWO 0.25 0.35 6.49 0.042 0.61594 OD_02 SUB_WALNUTBR_ 0.25 0.35 6.56 0.042 0.21045 O1 SUB_WALNUTBR_ 0.25 0.35 6.56 0.042 0.21045 O2 SUB_WALNUTBR_ 0.24 0.34 6.38 0.043 0.29968 O3 SUB_WALNUTBR_ 0.24 0.34 6.38 0.043 0.29968 O3 SUB_WALNUTBR_ 0.22 0.3 8.29 0.042 0.33878 <td></td> <td>0.26</td> <td>0.37</td> <td>6.57</td> <td>0.042</td> <td>2.8807</td>		0.26	0.37	6.57	0.042	2.8807
WOOD_1 SUB_UN_UN4_RED 0.25 0.36 6.56 0.042 0.40056 WOOD_2 SUB_UN_UN4_RED 0.24 0.33 6.5 0.043 0.25333 WOOD_3 SUB_UN3_REDWO 0.25 0.35 6.96 0.041 0.93988 OD_02 SUB_UN4_REDWO 0.25 0.36 6.57 0.042 1.0741 OD_01 SUB_UN4_REDWO 0.25 0.35 6.49 0.042 0.61594 OD_02 SUB_WALNUTBR_ 0.25 0.35 6.56 0.042 0.21045 01 SUB_WALNUTBR_ 0.25 0.35 6.56 0.042 0.21045 02 SUB_WALNUTBR_ 0.25 0.35 6.56 0.042 0.21054 02 SUB_WALNUTBR_ 0.24 0.34 6.38 0.043 0.29968 03 SUB_WFRKLITCO 0.22 0.3 8.29 0.042 0.33878 MITE_01 SUB_WHITEBAYO 0.25 0.35 6.57 0.042 0.0955966						
WOOD_1 SUB_UN_UN4_RED 0.25 0.36 6.56 0.042 0.40056 WOOD_2 SUB_UN_UN4_RED 0.24 0.33 6.5 0.043 0.25333 WOOD_3 SUB_UN3_REDWO 0.25 0.35 6.96 0.041 0.93988 OD_02 SUB_UN4_REDWO 0.25 0.36 6.57 0.042 1.0741 OD_01 SUB_UN4_REDWO 0.25 0.35 6.49 0.042 0.61594 OD_02 SUB_WALNUTBR_ 0.25 0.35 6.56 0.042 0.21045 01 SUB_WALNUTBR_ 0.25 0.35 6.56 0.042 0.21045 02 SUB_WALNUTBR_ 0.25 0.35 6.56 0.042 0.21054 02 SUB_WALNUTBR_ 0.24 0.34 6.38 0.043 0.29968 03 SUB_WFRKLITCO 0.22 0.3 8.29 0.042 0.33878 MITE_01 SUB_WHITEBAYO 0.25 0.35 6.57 0.042 0.0955966	SUB UN UN4 RED	0.25	0.35	6.56	0.042	0.33138
SUB_UN_UN4_RED 0.25 0.36 6.56 0.042 0.40056 WOOD_2 SUB_UN_UN4_RED 0.24 0.33 6.5 0.043 0.25333 WOOD_3 SUB_UN3_REDWO 0.25 0.35 6.96 0.041 0.93988 OD_02 SUB_UN4_REDWO 0.25 0.36 6.57 0.042 1.0741 OD_01 SUB_UN4_REDWO 0.25 0.35 6.49 0.042 0.61594 OD_02 SUB_WALNUTBR_ 0.25 0.35 6.56 0.042 0.21045 01 SUB_WALNUTBR_ 0.25 0.35 6.56 0.042 0.21054 02 SUB_WALNUTBR_ 0.25 0.35 6.56 0.042 0.21054 02 SUB_WALNUTBR_ 0.24 0.34 6.38 0.043 0.29968 03 SUB_WFRKLITCO 0.22 0.3 8.29 0.042 0.33878 MITE_02 SUB_WHITEBAYO 0.25 0.35 6.57 0.042 0.0955966						
WOOD_2 SUB_UN_UN4_RED 0.24 0.33 6.5 0.043 0.25333 WOOD_3 SUB_UN3_REDWO 0.25 0.35 6.96 0.041 0.93988 OD_02 SUB_UN4_REDWO 0.25 0.36 6.57 0.042 1.0741 SUB_UN4_REDWO 0.25 0.35 6.49 0.042 0.61594 OD_01 SUB_UN4_REDWO 0.25 0.35 6.56 0.042 0.61594 OD_02 SUB_WALNUTBR_ 0.25 0.35 6.56 0.042 0.21045 O1 SUB_WALNUTBR_ 0.25 0.35 6.56 0.042 0.21054 O2 SUB_WALNUTBR_ 0.24 0.34 6.38 0.043 0.29968 O3 SUB_WFRKLITCO 0.22 0.3 8.29 0.042 0.33878 MITE_01 SUB_WHITEBAYO 0.25 0.35 6.57 0.042 0.0955966 U_01 SUB_WHITEBAYO 0.25 0.35 6.51 0.041 0.0632219		0.25	0.36	6.56	0.042	0.40056
SUB_UN_UN4_RED 0.24 0.33 6.5 0.043 0.25333 WOOD_3 SUB_UN3_REDWO 0.25 0.35 6.96 0.041 0.93988 OD_02 SUB_UN4_REDWO 0.25 0.36 6.57 0.042 1.0741 OD_01 SUB_UN4_REDWO 0.25 0.35 6.49 0.042 0.61594 OD_02 SUB_WALNUTBR_ 0.25 0.35 6.56 0.042 0.21045 O1 SUB_WALNUTBR_ 0.25 0.35 6.56 0.042 0.21054 O2 SUB_WALNUTBR_ 0.25 0.35 6.56 0.042 0.21054 O2 SUB_WALNUTBR_ 0.24 0.34 6.38 0.043 0.29968 O3 SUB_WFRKLITCO 0.22 0.3 8.29 0.042 0.33878 SUB_WFRKLITCO 0.22 0.31 6.99 0.04 0.34513 MITE_02 SUB_WHITEBAYO 0.25 0.35 6.51 0.041 0.0632219						
WOOD_3 SUB_UN3_REDWO 0.25 0.35 6.96 0.041 0.93988 OD_02 SUB_UN4_REDWO 0.25 0.36 6.57 0.042 1.0741 OD_01 SUB_UN4_REDWO 0.25 0.35 6.49 0.042 0.61594 OD_02 SUB_WALNUTBR_ 0.25 0.35 6.56 0.042 0.21045 01 SUB_WALNUTBR_ 0.25 0.35 6.56 0.042 0.21054 02 SUB_WALNUTBR_ 0.24 0.34 6.38 0.043 0.29968 03 SUB_WFRKLITCO 0.22 0.3 8.29 0.042 0.33878 MITE_01 SUB_WFRKLITCO 0.22 0.31 6.99 0.04 0.34513 MITE_02 SUB_WHITEBAYO 0.25 0.35 6.57 0.042 0.0955966 U_01 SUB_WHITEBAYO 0.25 0.35 6.51 0.041 0.0632219		0.24	0.33	6.5	0.043	0.25333
SUB_UN3_REDWO 0.25 0.35 6.96 0.041 0.93988 OD_02 SUB_UN4_REDWO 0.25 0.36 6.57 0.042 1.0741 OD_01 SUB_UN4_REDWO 0.25 0.35 6.49 0.042 0.61594 OD_02 SUB_WALNUTBR_ 0.25 0.35 6.56 0.042 0.21045 SUB_WALNUTBR_ 0.25 0.35 6.56 0.042 0.21054 02 SUB_WALNUTBR_ 0.24 0.34 6.38 0.043 0.29968 03 SUB_WFRKLITCO 0.22 0.3 8.29 0.042 0.33878 MITE_01 SUB_WFRKLITCO 0.22 0.31 6.99 0.04 0.34513 MITE_02 SUB_WHITEBAYO 0.25 0.35 6.51 0.041 0.0632219						
OD_02 0.25 0.36 6.57 0.042 1.0741 OD_01 0.25 0.35 6.49 0.042 0.61594 SUB_UN4_REDWO OD_02 0.25 0.35 6.56 0.042 0.21045 SUB_WALNUTBR_ O1 0.25 0.35 6.56 0.042 0.21054 SUB_WALNUTBR_ O2 0.24 0.34 6.38 0.043 0.29968 SUB_WFRKLITCO MITE_01 0.22 0.3 8.29 0.042 0.33878 SUB_WFRKLITCO MITE_02 0.22 0.31 6.99 0.04 0.34513 SUB_WHITEBAYO MITE_01 0.25 0.35 6.57 0.042 0.0955966 U_01 0.01 0.025 0.35 6.51 0.041 0.0632219		0.25	0.35	6.96	0.041	0.93988
OD_01 SUB_UN4_REDWO 0.25 0.35 6.49 0.042 0.61594 OD_02 SUB_WALNUTBR_ 0.25 0.35 6.56 0.042 0.21045 SUB_WALNUTBR_ 0.25 0.35 6.56 0.042 0.21054 02 SUB_WALNUTBR_ 0.24 0.34 6.38 0.043 0.29968 03 SUB_WFRKLITCO 0.22 0.3 8.29 0.042 0.33878 MITE_01 SUB_WFRKLITCO 0.22 0.31 6.99 0.04 0.34513 MITE_02 SUB_WHITEBAYO 0.25 0.35 6.57 0.042 0.0955966 U_01 SUB_WHITEBAYO 0.25 0.35 6.51 0.041 0.0632219						
SUB_UN4_REDWO OD_02 0.25 0.35 6.49 0.042 0.61594 SUB_WALNUTBR_ O1 0.25 0.35 6.56 0.042 0.21045 SUB_WALNUTBR_ O2 0.25 0.35 6.56 0.042 0.21054 SUB_WALNUTBR_ O2 0.24 0.34 6.38 0.043 0.29968 SUB_WFRKLITCO O2 0.22 0.3 8.29 0.042 0.33878 MITE_01 SUB_WFRKLITCO O22 0.31 6.99 0.04 0.34513 SUB_WHITEBAYO O25 0.35 6.57 0.042 0.0955966 U_01 SUB_WHITEBAYO O25 0.35 6.51 0.041 0.0632219	SUB UN4 REDWO	0.25	0.36	6.57	0.042	1.0741
OD_02 0.25 0.35 6.56 0.042 0.21045 SUB_WALNUTBR_ 0.25 0.35 6.56 0.042 0.21054 SUB_WALNUTBR_ 0.24 0.34 6.38 0.043 0.29968 03 SUB_WFRKLITCO 0.22 0.3 8.29 0.042 0.33878 MITE_01 SUB_WFRKLITCO 0.22 0.31 6.99 0.04 0.34513 MITE_02 SUB_WHITEBAYO 0.25 0.35 6.57 0.042 0.0955966 U_01 SUB_WHITEBAYO 0.25 0.35 6.51 0.041 0.0632219	OD_01					
SUB_WALNUTBR_ 01 0.25 0.35 6.56 0.042 0.21045 SUB_WALNUTBR_ 02 0.25 0.35 6.56 0.042 0.21054 SUB_WALNUTBR_ 02 0.24 0.34 6.38 0.043 0.29968 SUB_WFRKLITCO 0.22 0.3 8.29 0.042 0.33878 MITE_01 0.22 0.31 6.99 0.04 0.34513 SUB_WFRKLITCO 0.25 0.35 6.57 0.042 0.0955966 U_01 0.01 0.05 0.35 6.51 0.041 0.0632219	SUB_UN4_REDWO	0.25	0.35	6.49	0.042	0.61594
01 SUB_WALNUTBR_ 0.25 0.35 6.56 0.042 0.21054 SUB_WALNUTBR_ 0.24 0.34 6.38 0.043 0.29968 03 SUB_WFRKLITCO 0.22 0.3 8.29 0.042 0.33878 MITE_01 SUB_WFRKLITCO 0.22 0.31 6.99 0.04 0.34513 MITE_02 SUB_WHITEBAYO 0.25 0.35 6.57 0.042 0.0955966 U_01 SUB_WHITEBAYO 0.25 0.35 6.51 0.041 0.0632219	OD_02					
01 SUB_WALNUTBR_ 0.25 0.35 6.56 0.042 0.21054 02 SUB_WALNUTBR_ 0.24 0.34 6.38 0.043 0.29968 03 SUB_WFRKLITCO 0.22 0.3 8.29 0.042 0.33878 MITE_01 SUB_WFRKLITCO 0.22 0.31 6.99 0.04 0.34513 MITE_02 SUB_WHITEBAYO 0.25 0.35 6.57 0.042 0.0955966 U_01 SUB_WHITEBAYO 0.25 0.35 6.51 0.041 0.0632219	SUB WALNUTBR	0.25	0.35	6.56	0.042	0.21045
02 SUB_WALNUTBR_ 0.24 0.34 6.38 0.043 0.29968 03 SUB_WFRKLITCO 0.22 0.3 8.29 0.042 0.33878 MITE_01 SUB_WFRKLITCO 0.22 0.31 6.99 0.04 0.34513 MITE_02 SUB_WHITEBAYO 0.25 0.35 6.57 0.042 0.0955966 U_01 SUB_WHITEBAYO 0.25 0.35 6.51 0.041 0.0632219	01					
SUB_WALNUTBR_ 03 0.24 0.34 6.38 0.043 0.29968 SUB_WFRKLITCO MITE_01 0.22 0.3 8.29 0.042 0.33878 SUB_WFRKLITCO MITE_02 0.22 0.31 6.99 0.04 0.34513 SUB_WHITEBAYO 0.25 0.35 6.57 0.042 0.0955966 U_01 0.041 0.0632219	SUB WALNUTBR	0.25	0.35	6.56	0.042	0.21054
03 SUB_WFRKLITCO 0.22 0.3 8.29 0.042 0.33878 MITE_01 SUB_WFRKLITCO 0.22 0.31 6.99 0.04 0.34513 MITE_02 SUB_WHITEBAYO 0.25 0.35 6.57 0.042 0.0955966 U_01 SUB_WHITEBAYO 0.25 0.35 6.51 0.041 0.0632219	02					
SUB_WFRKLITCO 0.22 0.3 8.29 0.042 0.33878 MITE_01 SUB_WFRKLITCO 0.22 0.31 6.99 0.04 0.34513 MITE_02 SUB_WHITEBAYO 0.25 0.35 6.57 0.042 0.0955966 U_01 SUB_WHITEBAYO 0.25 0.35 6.51 0.041 0.0632219	SUB_WALNUTBR_	0.24	0.34	6.38	0.043	0.29968
MITE_01 0.22 0.31 6.99 0.04 0.34513 MITE_02 0.25 0.35 6.57 0.042 0.0955966 U_01 0.25 0.35 6.51 0.041 0.0632219	03					
MITE_01 0.22 0.31 6.99 0.04 0.34513 MITE_02 0.25 0.35 6.57 0.042 0.0955966 U_01 0.25 0.35 6.51 0.041 0.0632219	SUB_WFRKLITCO	0.22	0.3	8.29	0.042	0.33878
SUB_WFRKLITCO 0.22 0.31 6.99 0.04 0.34513 MITE_02 SUB_WHITEBAYO 0.25 0.35 6.57 0.042 0.0955966 U_01 SUB_WHITEBAYO 0.25 0.35 6.51 0.041 0.0632219	—					
MITE_02 0.25 0.35 0.042 0.0955966 U_01 0.0955966 0.041 0.0632219	_	0.22	0.31	6.99	0.04	0.34513
SUB_WHITEBAYO 0.25 0.35 6.57 0.042 0.0955966 U_01 SUB_WHITEBAYO 0.25 0.35 6.51 0.041 0.0632219	_					
U_01 U_01 SUB_WHITEBAYO 0.25 0.35 6.51 0.041 0.0632219		0.25	0.35	6.57	0.042	0.0955966
SUB_WHITEBAYO 0.25 0.35 6.51 0.041 0.0632219	_					
_		0.25	0.35	6.51	0.041	0.0632219
	U 02					

SUB_WHITEBAYO	0.26	0.36	6.53	0.042	0.38256
U_03					
SUB_WHITEBAYO	0.26	0.36	6.56	0.042	0.46165
U_04					
SUB_WHITEBAYO	0.26	0.37	6.56	0.042	0.28198
U_05					
SUB_WHITEBAYO	0.25	0.35	6.51	0.041	0.33652
U_06					
TaberC_CarsonRd	0.23	0.32	6.54	0.041	0.70421
TaberC_HannaC	0.23	0.32	6.84	0.04	0.80381
TaylorByu_DS_I12	0.24	0.34	6.58	0.041	11.301
TaylorByu_FL	0.23	0.32	6.57	0.042	34.622
TaylorByu_I12	0.23	0.32	6.51	0.041	26.543
TaylorByu_RR	0.23	0.32	6.55	0.042	17.894
UnDuffByu_DS	0.22	0.31	7.3	0.041	0.13907
UnDuffByu_US	0.24	0.34	6.67	0.042	11.790
UnT_GreenwellSp	0.23	0.32	6.55	0.041	1.0947
UNT1ADarlingCrk_0	0.25	0.35	4.71	0.069	0.40829
1					
UNT1BlackCrk_01	0.25	0.35	5.06	0.064	0.28070
UNT1BluffCrk_01	0.22	0.3	7.15	0.036	0.65190
UNT1DarlingCrk_01	0.2	0.28	6.2	0.051	0.53803
UNT1DarlingCrk_02	0.24	0.33	4.76	0.064	0.47753
UNT1DarlingCrk_03	0.24	0.33	5.92	0.059	0.23218
UNT1DunnCrk_01	0.2	0.28	7.32	0.036	0.63681
UNT1SouthSandyR	0.23	0.33	5.19	0.061	1.0359
un_01					
UNT1WoodlandCrk_	0.25	0.35	6.38	0.044	0.55089
01					
UNT2ASSandyRun	0.24	0.34	4.49	0.068	0.14167
UNT2BlackCrk_01	0.24	0.34	5	0.065	1.7942
UNT2BluffCrk_01	0.2	0.28	7.54	0.034	0.59597
UNT2DarlingCrk_01	0.25	0.35	4.9	0.066	0.67620
UNT2DarlingCrk_02	0.25	0.35	4.71	0.068	0.92827
UNT2DarlingCrk_03	0.25	0.35	4.93	0.065	0.66776
UNT2SouthSandyR	0.25	0.35	4.61	0.07	0
un_01					
UNT2SouthSandyR	0.24	0.34	4.92	0.064	0.12417
un_02					

UNT3ADarlingCrk_0	0.24	0.34	5.19	0.062	0.0038889
1					
UNT3BlackCrk_01	0.23	0.33	5.35	0.061	0.60149
UNT3DarlingCrk_01	0.24	0.34	5.09	0.065	0.45067
UNT3DarlingCrk_02	0.23	0.32	5.75	0.055	0.0077778
UNT3DarlingCrk_03	0.23	0.32	5.83	0.054	0.48229
UNT3DarlingCrk_04	0.21	0.3	6.15	0.05	0.27196
UnT3SandyC_Librt1	0.24	0.34	6.48	0.041	1.2096
UnT3SandyC_Librt2	0.23	0.33	6.49	0.043	1.7715
UNT3SouthSandyR un 01	0.25	0.35	4.63	0.07	0.11078
UNT3SouthSandyR un_02	0.25	0.35	4.69	0.069	0.89279
UNT3SouthSandyR un_03	0.25	0.35	4.78	0.067	0.76607
UNT4ADarlingCrk_0 1	0.25	0.35	5.19	0.062	0.10751
UNT4ADarlingCrk_0 2	0.25	0.35	5.57	0.056	0.31880
UNT4DarlingCrk_01	0.25	0.36	5.15	0.064	0.40187
UNT4DarlingCrk_02	0.25	0.34	5.37	0.06	0.0216583
UNT4DarlingCrk_03	0.23	0.33	6.24	0.048	0
Un_UpperWhiteByu	0.23	0.32	5.95	0.038	0.12629
Un1LilSndyC2_DS	0.23	0.33	7.1	0.042	1.4170
Un1LilSndyC2_US	0.25	0.35	6.57	0.042	0.71452
Un1MillC_PrideB	0.22	0.31	6.59	0.042	0.99213
Un1MillC_US_LOC	0.22	0.31	6.57	0.042	0.90915
Un1SandyC	0.23	0.32	6.89	0.041	0.0113031
Un2LilSndyC2_DS	0.23	0.32	6.62	0.041	0.32715
Un2LilSndyC2_US	0.23	0.33	6.99	0.041	0.84247
Un2_NBrWards_DS	0.24	0.34	6.73	0.041	43.778
Un2_NBrWards_US	0.28	0.39	8.09	0.033	45.003735
Un3LilSndyC2_DS	0.23	0.33	6.57	0.042	0.86592
Un3LilSndyC2_US	0.24	0.34	6.55	0.041	2.3949
Un4LilSndyC2	0.23	0.32	6.53	0.041	2.2116
Un4SandyC_DS	0.24	0.34	6.24	0.041	2.8390
Un4SandyC_US	0.23	0.32	6.55	0.04	2.8062
UpperWhiteByu_DS	0.25	0.35	7.62	0.042	2.2551
UpperWhiteByu_US	0.25	0.36	7.43	0.042	2.8131

UWhiteByu_Div	0.25	0.35	6.57	0.04	0.0050346
UWhiteByu_DW	0.25	0.36	6.55	0.042	1.1735
UWhiteByu_Hudson	0.25	0.35	6.62	0.042	3.1703
UWhiteByu_HWY64	0.25	0.35	6.75	0.042	8.2619
UWhiteByu_LowZac	0.25	0.35	7.08	0.041	12.254
UWhiteByu_US_Div	0.24	0.34	6.61	0.041	0.27039
UWhiteByu_UT	0.25	0.36	6.87	0.042	1.3593
WardsCr_Bluebon	0.32	0.45	9.69	0.023	55.832250
					1
WardsCr_Choctaw	0.28	0.4	8.21	0.032	49.443
WardsCr_College	0.26	0.37	7.71	0.035	29.460
WardsCr_EssenLn	0.27	0.38	7.96	0.035	34.257
WardsCr_GovtSt	0.29	0.42	8.92	0.028	51.109
WardsCr_GusYoung	0.25	0.36	7.07	0.038	51.183
WardsCr_Highland	0.24	0.33	7.03	0.039	30.984
WardsCr_I10_DS	0.23	0.32	7.84	0.039	42.099
WardsCr_I10_US	0.27	0.38	7.79	0.035	37.493733
WardsCr_Manchac	0.24	0.34	7.47	0.037	38.567
WardsCr_PecueLn	0.25	0.35	7.78	0.034	51.403
WardsCr_SiegenLn	0.26	0.36	7.34	0.036	50.555
WaxDitch	0.24	0.34	6.57	0.042	33.013
WClyellT1_DS_Spr	0.22	0.3	6.54	0.042	6.5104
WClyellT1_Pvt	0.23	0.32	6.37	0.045	1.4230
WClyellT1_SprfdR	0.22	0.31	6.54	0.042	1.4653
WClyell_ArnoldR	0.23	0.32	6.56	0.042	2.1512
WClyell_CnMkt	0.22	0.31	6.57	0.042	0.97486
WClyell_DS_ArnId	0.23	0.32	6.54	0.042	11.584
WClyell_DS_I12	0.24	0.34	6.51	0.041	11.052
WClyell_DS_Spr	0.22	0.32	6.56	0.042	2.9345
WClyell_HoodRd	0.24	0.34	6.61	0.042	4.3869
WClyell_I12	0.23	0.33	6.49	0.041	16.610
WClyell_JoeMayR	0.24	0.34	6.56	0.042	11.377
WClyell_NanWes	0.21	0.3	5.96	0.05	8.9421
WClyell_RR	0.23	0.33	6.51	0.042	15.850
WClyell_SprgfldR	0.22	0.31	6.55	0.042	2.1066
WeinerCr_DS	0.28	0.39	8.06	0.031	58.901
WeinerCr_I12	0.31	0.44	9.15	0.027	63.966343
					2

WeinerCr_US	0.31	0.43	9.02	0.027	59.846
WelshGullyT1	0.26	0.37	6.57	0.039	20.695345
					3
WelshGul_Manchac	0.21	0.3	6.96	0.041	7.7812
WelshGul_NrPrair	0.26	0.36	6.57	0.039	34.437
WestForkAmite_01	0.27	0.38	6.27	0.046	1.1152
WestForkAmite_02	0.27	0.37	5.88	0.052	0.44427
WestForkAmite_03	0.27	0.38	5.87	0.052	1.1260
WestForkAmite_04	0.26	0.37	5.91	0.05	0.56039
WFrkBeaverC2_Spr	0.23	0.32	6.44	0.043	23.416569
					8
WFrkBeaverC2_US	0.22	0.3	5.88	0.048	22.254
WindByu_Jackson	0.23	0.32	6.57	0.042	1.4493
WindByu_LSC2	0.23	0.33	6.48	0.043	0.95044
WindByu_Milldale	0.24	0.34	6.55	0.042	1.0838
WindByu_PeairsRd	0.23	0.32	6.52	0.041	2.5236
WLatCypB_ScotZac	0.25	0.36	7.91	0.038	24.655
WLatCypB_US_LO	0.24	0.34	7.96	0.041	0.0493801
С					
WoodlandCrk_01	0.25	0.35	6.5	0.041	1.3454
WoodlandCrk_02	0.25	0.35	6.32	0.044	0.37148
WoodlandCrk_03	0.23	0.32	6.92	0.04	0.11902
WoodlandCrk_04	0.23	0.32	6.99	0.039	0.83871
WoodlandCrk_05	0.25	0.35	6.57	0.042	0.43565
WoodlandCrk_06	0.24	0.34	6.6	0.042	0.0442563
WoodlandCrk_07	0.22	0.3	6.69	0.041	.00054247
					9

Hydrologic Parameters for Future Conditions Year 2076

Subbasin	Initial	Saturated	Suction	Conductiv	Imperviou
	Content	Content		ity	s %
AllenByu_HWY1032	0.24	0.34	6.55	0.042	19.876
AlligatorT_Bluff	0.25	0.35	6.99	0.034	33.33
AmiteDivCnl_C01	0.21	0.29	11.09	0.008	0.43575
AmiteDivCnl_C02	0.19	0.26	10.59	0.012	2.6346
AmiteDivC_HWY22	0.19	0.27	8.42	0.026	6.8531
AmiteRT34_HWY16	0.23	0.32	6.12	0.048	25.323
AmiteR_BarbByu	0.24	0.34	7.59	0.037	0.80789
AmiteR_BeaverCrk	0.24	0.33	6.45	0.043	0.42372
AmiteR_BluffCrk	0.22	0.31	7.29	0.082	1.3332
AmiteR_ChaneyBr	0.27	0.38	8.4	0.018	2.6272
AmiteR_ChinqCan	0.24	0.33	8.23	0.027	3.461
AmiteR_ClearCrk	0.24	0.34	5.51	0.056	0.98978
AmiteR_ColBay	0.2	0.29	6.96	0.025	4.8208
AmiteR_C01	0.23	0.32	6.31	0.041	0.9316
AmiteR_C02	0.21	0.3	5.91	0.038	3.2174
AmiteR_C03	0.23	0.32	6.22	0.046	0.97664
AmiteR_C04	0.22	0.32	6.18	0.039	9.6001
AmiteR_C05	0.23	0.32	6.25	0.047	7.3028
AmiteR_C06	0.23	0.33	6.76	0.032	11.695
AmiteR_C07	0.23	0.32	6.32	0.041	6.9509
AmiteR_C08	0.23	0.33	6.31	0.041	26.594
AmiteR_C09	0.23	0.32	6.31	0.054	4.0408
AmiteR_C10	0.23	0.32	6.3	0.041	17.573771
AmiteR_C11	0.25	0.35	7.42	0.03	16.448
AmiteR_C12	0.23	0.32	6.43	0.041	19.993
AmiteR_C13	0.22	0.31	6.21	0.04	5.697
AmiteR_C14	0.23	0.32	6.31	0.053	2.6007
AmiteR_C15	0.24	0.34	7.04	0.029	4.7168
AmiteR_DarlingCrk	0.24	0.33	6.45	0.049	1.0759
AmiteR_HendByu	0.16	0.22	8.77	0.02	10.652
AmiteR_HWY16	0.21	0.3	9.06	0.021	3.3982
AmiteR_HWY22	0.25	0.35	8.87	0.027	1.1262
AmiteR_KingGByu	0.24	0.34	8.88	0.027	2.0428

AmiteR L03	0.24	0.34	6.37	0.041	37.120460
_					6
AmiteR_Magnolia	0.24	0.34	7.03	0.06	16.296
AmiteR_Maurepas	0.26	0.36	10.43	0.016	1.1679
AmiteR_PigeonCrk	0.21	0.3	7.73	0.06	1.0115
AmiteR_PtVincent	0.21	0.29	6.27	0.033	6.1793
AmiteR_RockyCrk	0.21	0.3	7.45	0.055	0.89698
AmiteR_R03	0.26	0.36	6.85	0.039	46.048
AmiteR_StateHwy10	0.21	0.3	6.58	0.047	0.66589
AmiteR_StateHwy37	0.2	0.28	7.2	0.06	0.88284
AmiteR_StateHwy43	0.22	0.31	6.58	0.041	0.769
2					
AmiteR_US_Div	0.04	0.05	3.77	0.004	3.3398
AmiteR_WhittenCrk	0.23	0.32	7.2	0.052	1.4494
AmiteR_17	0.24	0.34	6.86	0.06	1.5802
AmiteR_18	0.26	0.37	7.4	0.033	0.7627
AntiochC_LeeMrtn	0.25	0.35	6.56	0.042	1.535
BeaverBr_CnMkt	0.23	0.32	6.55	0.042	18.204
BeaverBr_DuffRd	0.23	0.32	6.55	0.042	11.2
BeaverBr_RR	0.23	0.32	6.55	0.042	9.0019
BeaverByuNP_Hoop	0.23	0.33	6.53	0.041	19.898
BeaverByuNP_US	0.22	0.31	6.56	0.042	13.992
BeaverByu_Denham	0.22	0.31	6.56	0.041	4.1070368
BeaverByu_French	0.25	0.35	6.94	0.036	23.407
BeaverByu_GrnSp	0.24	0.33	6.51	0.04	31.369256
					1
BeaverByu_Hooper	0.22	0.31	6.52	0.041	8.2017
BeaverByu_US_LO C	0.23	0.32	6.57	0.041	3.0644
BeaverByu Wax	0.23	0.32	6.55	0.039	12.529
BeaverCrk_01	0.28	0.39	6.12	0.049	1.7672
BeaverCrk 02	0.27	0.38	6.18	0.048	0.66082
BeaverCrk 03	0.27	0.38	5.98	0.05	0.66816
BeaverCrk_04	0.26	0.37	6.21	0.046	0.37856
BeaverCrk 05	0.24	0.34	6.12	0.047	0.65128
BeaverCrk 06	0.22	0.3	6.21	0.041	0.35288
BeaverCrk_07	0.22	0.31	6.35	0.041	0.44113
BeaverC2 CnMkt	0.22	0.32	6.55	0.042	23.106
	J	3.32	3.55	J.J.L	_0.700

BeaverC2_ForeRd	0.22	0.32	6.57	0.042	13.956
BeaverC2_HWY16	0.23	0.32	6.44	0.043	28.137
BeaverC2_Magnol	0.23	0.33	6.47	0.043	35.792
BeaverC2_Sprgfld	0.23	0.32	6.56	0.042	33.808
BeaverC3_DS_Pear	0.22	0.31	7.22	0.041	0.51513
BeaverC3_Jackson	0.25	0.36	7.31	0.042	1.3859
BeaverC3_LSandy	0.23	0.32	7.02	0.042	0.31179
BeaverC3_Milldal	0.25	0.35	6.75	0.042	0.98826
BeaverC3_Peairs	0.23	0.32	6.85	0.042	1.0882
BeaverC3_US_LOC	0.25	0.35	7.03	0.042	1.0444
BeaverPondByu_DS	0.23	0.32	6.44	0.039	0.4075
BeaverPondByu_US	0.25	0.35	6.56	0.041	0.37552
BFountainNP	0.23	0.33	6.79	0.039	37.082397
					5
BFountNBr_Boyd	0.3	0.42	11.83	0.011	97.450949
					2
BFountNBr_Lee	0.24	0.33	11.34	0.015	43.271
BFountSBr_BF	0.2	0.29	12.02	0.009	23.351
BFountSBr_Gour	0.23	0.32	12.27	0.008	62.099
BFountSBr_US	0.31	0.44	10.21	0.02	72.092723
					6
BFountT1_DS	0.22	0.32	7.22	0.035	22.561
BFountT1_HighInd	0.24	0.34	6.66	0.041	51.117961
					6
BFount_BFSBr	0.2	0.28	12.41	0.007	71.14
BFount_Bluebon	0.21	0.29	8.42	0.034	47.902
BFount_Burbank	0.27	0.39	12.14	0.009	45.947
BFount_BurbankDr	0.22	0.31	7.58	0.034	46.011
BFount_ByuManch	0.19	0.26	11.15	0.015	8.5045
BFount_ElbowByu	0.17	0.23	11.01	0.016	42.293
BFount_Nich_DS	0.15	0.22	12.2	0.01	39.717
BFount_Nich_US	0.34	0.48	11.96	0.01	98.418
BFount_US_Trib	0.17	0.23	10.49	0.02	10.103
BirchCrk_01	0.25	0.35	4.72	0.069	1.7106
BlackCrk_01	0.25	0.35	4.93	0.066	0.0026584
BlackCrk_02	0.2	0.29	6.39	0.048	0.50594
BlackCrk_03	0.25	0.35	5.18	0.062	1.3741
BlackCrk_04	0.25	0.35	4.94	0.065	1.4893

D			T = -		0.0=00=
BlackCrk_05	0.23	0.32	5.6	0.057	0.25867
BlackCrk_06	0.21	0.3	6.62	0.043	1.5085
BlackCrk_07	0.21	0.29	6.42	0.046	0.47298
BlackCrk_08	0.24	0.33	6.04	0.05	2.0342
BlackCrk_09	0.24	0.33	5.71	0.058	1.7881
BLACKCR_CMB	0.26	0.37	6.45	0.041	0.46994
BLACKCR_HWY412	0.26	0.36	6.55	0.042	0.41178
BlackwtrBT1_BB	0.23	0.33	6.55	0.042	12.36
BlackwtrBT1_Core	0.23	0.32	6.57	0.042	3.2686
BlackwtrBT1_Mcul	0.22	0.31	6.55	0.041	4.3095
BlackwtrBT2_BB	0.23	0.32	6.53	0.042	2.3118
BlackwtrBT2_DW	0.23	0.32	6.56	0.042	1.8765
BlackwtrBT3_US	0.23	0.32	6.46	0.043	3.0351
BlackwtrB_BBT1	0.23	0.32	6.59	0.041	2.7163
BlackwtrB_BBT2	0.22	0.31	6.56	0.042	2.4249
BlackwtrB_Comite	0.23	0.33	6.57	0.041	17.242
BlackwtrB_McCull	0.22	0.31	6.56	0.042	8.4855
BlackwtrB_US	0.22	0.31	6.48	0.041	0.73895
BlackwtrT3_DS	0.22	0.31	6.53	0.043	1.9751
BluffCrk_AmiteR	0.23	0.32	6.54	0.044	0.99203
BluffCrk_01	0.24	0.33	6.85	0.039	0.88534
BluffCrk_02	0.22	0.31	7.15	0.037	0.7133
BluffCrk_03	0.19	0.27	7.63	0.033	1.0253
BluffCrk_04	0.2	0.28	7.43	0.035	0.2422
BluffCrk_05	0.2	0.28	7.41	0.035	0.54775
BluffCrk_06	0.2	0.28	7.36	0.035	0.87491
BluffCrk_07	0.21	0.3	7.22	0.036	0.80329
BluffSwamp_Gage	0.23	0.32	7.92	0.027	40.529977
					6
ByuBraud_HWY30	0.13	0.19	10.83	0.019	21.839278
					2
ByuBraud_HWY74	0.11	0.15	12.24	0.01	27.784
ByuBraud_US_LOC	0.18	0.25	10.15	0.029	13.48
ByuDuplant_LeeDr	0.28	0.39	8.81	0.025	32.019
ByuDuplant_NrDaw	0.26	0.37	8.13	0.03	28.66
ByuManch_Airline	0.21	0.3	6.76	0.038	40.923
ByuManch_BFount	0.19	0.27	9.48	0.022	12.962
ByuManch_Cotton	0.22	0.32	6.44	0.039	11.219

161

ByuManch_Gator	0.19	0.27	10.69	0.029	16.493
ByuManch_NrAmite	0.22	0.31	6.85	0.04	8.8466
ByuManch_NrLiPra	0.23	0.32	6.46	0.04	4.9479
ByuManch_NrMSRiv	0.2	0.28	8.28	0.034	21.767
ByuManch_Perkins	0.23	0.32	6.43	0.036	40.73
ByuManch_Welsh	0.21	0.3	6.41	0.039	35.096
ByuPaul_HWY30	0.18	0.25	10.75	0.034	1.413
ByuPaul_US_HWY3	0.16	0.23	10.67	0.028	3.9231
0					
ByuPaul_US_LOC	0.16	0.23	11.38	0.023	3.3475
CampCreek_HWY4	0.24	0.34	6.69	0.042	1.1274
2					
ChaneyBr_HWY16	0.23	0.32	6.49	0.041	3.9914
ChinqCan_C01	0.26	0.37	10.85	0.015	0.79927
ChinqCan_C02	0.25	0.35	9.94	0.018	3.8575
ClayCut_Airline	0.3	0.43	9.34	0.025	95.093
ClayCut_AntiochR	0.24	0.33	6.9	0.041	57.492145
					6
ClayCut_CalRd	0.26	0.37	7.56	0.036	64.099
ClayCut_Inns	0.24	0.34	6.64	0.041	71.035
ClayCut_JacksB	0.27	0.38	7.92	0.034	70.386
ClayCut_NrAmite	0.23	0.33	6.4	0.041	12.196
ClayCut_Siegen	0.28	0.4	8.36	0.031	91.912
ClayCut_US_Tiger	0.24	0.34	6.85	0.041	27.033597
					6
ClaytonByuT1	0.23	0.32	6.54	0.043	9.3295
ClaytonByu_Bend	0.22	0.31	6.4	0.044	19.864
ClearCrkT1_01	0.25	0.35	6.56	0.042	0.30807
ClearCrkT1_02	0.25	0.34	6.55	0.042	0.34551
ClearCrk_01	0.25	0.36	6.32	0.046	0.35524
ClearCrk_02	0.25	0.35	6.39	0.044	0.92743
ClearCrk_03	0.23	0.32	6.54	0.04	1.4955
ClearCrk_04	0.24	0.34	6.55	0.042	1.0686
ClintonAllenLat	0.23	0.32	6.54	0.042	14.657
ClyellCrkNP	0.24	0.34	6.54	0.042	1.9598
ClyellT9_DS_FL	0.26	0.36	6.57	0.042	4.2146
ClyellT9_FL	0.26	0.36	6.56	0.042	1.0104
Clyell CB	0.24	0.34	7.03	0.039	1.9405239

Clyell_DS_I12	0.25	0.35	6.55	0.042	4.3029
Clyell_DS_LigoLn	0.22	0.31	6.51	0.043	1.6553
Clyell_FLBlvd	0.25	0.35	6.56	0.042	2.297
Clyell_I12	0.24	0.34	6.56	0.042	3.1425
Clyell_JoelWatts	0.24	0.34	6.56	0.042	1.5858
Clyell_LigoLn	0.24	0.34	6.54	0.042	2.0639
Clyell_LilClyell	0.24	0.34	6.57	0.042	1.3946
Clyell_LodStafrd	0.23	0.33	6.48	0.041	1.0921
Clyell_US_LOC	0.24	0.33	6.57	0.042	1.1751
Clyell_W_Hood	0.24	0.34	6.57	0.042	0.39604
ColtonCrk_HWY16	0.23	0.32	6.39	0.041	26.429
ColyellBay	0.24	0.33	7.41	0.037	2.3299
COMITE_atComite	0.22	0.31	7	0.088	1.7632
COMITE_Baker	0.23	0.33	6.76	0.071	4.2373
COMITE_DenhamS	0.25	0.34	6.47	0.055	18.153
pr					
COMITE_dsJOORR	0.25	0.35	7.17	0.036	14.465
D					
COMITE_dsLA37	0.23	0.32	6.43	0.044	19.131
COMITE_DS_OB	0.22	0.31	5.98	0.084	3.6812
COMITE_HooperRd	0.24	0.34	6.76	0.058	12.743
COMITE_Hurricane	0.23	0.32	6.55	0.039	11.318
COMITE_nrComite	0.26	0.37	7.74	0.053	4.9564
COMITE_RR	0.23	0.32	6.43	0.055	4.2987
COMITE_usLA37	0.25	0.36	7.23	0.032	21.142
COMITE_US_OB	0.22	0.3	6.17	0.039	4.7282
COMITE_Zachary	0.23	0.32	6.48	0.056	1.9551
CooperMillB_BC	0.26	0.36	6.5	0.041	3.4374
CooperMillB_Midw	0.24	0.34	6.55	0.042	7.6946
CooperMillB_UWB	0.22	0.31	6.07	0.038	1.1987
CorpCanalNP	0.3	0.42	10.32	0.018	77.048
CorpCanal_Myrtle	0.32	0.45	9.55	0.023	92.767
CorpCanal_Stanfrd	0.34	0.48	10.42	0.013	64.696
CorpCanal_State	0.33	0.46	10.23	0.017	75.246
DarlingCrk_AmiteR	0.2	0.29	7.95	0.041	1.0849
DarlingCrk_01	0.25	0.35	5.29	0.062	0.78933
DarlingCrk_02	0.25	0.34	4.84	0.066	0.66619
DarlingCrk_03	0.25	0.35	4.89	0.066	0.45633
·					

DarlingCrk_04	0.24	0.34	5.42	0.059	0.44972
DarlingCrk_05	0.24	0.34	5.44	0.058	0.80065
DarlingCrk_06	0.24	0.34	6.25	0.059	0.43924
DarlingCrk_07	0.24	0.34	5.23	0.063	0.58677
DarlingCrk_08	0.23	0.33	5.45	0.059	0.99424
DarlingCrk_09	0.22	0.3	5.81	0.054	1.1598
DarlingCrk_10	0.23	0.33	5.5	0.057	1.3127
DarlingCrk_11	0.19	0.27	7.02	0.043	0.48206
DarlingCrk_12	0.19	0.26	8.12	0.036	0.93145
DarlingCrk_13	0.2	0.28	7.58	0.041	2.7308
DawsonCr_Bluebon	0.27	0.38	7.97	0.032	52.34
DawsonCr_College	0.3	0.42	9.13	0.026	60.048551
					2
DawsonCr_GovtSt	0.3	0.42	9.04	0.027	75.745
DawsonCr_Hund_D	0.28	0.4	8.35	0.03	47.931
S					
DawsonCr_QuailDr	0.27	0.38	8.23	0.032	56.617
DawsonCr_WardCr	0.28	0.4	8.49	0.03	71.881
DraughnsC_French	0.24	0.34	6.57	0.037	17.062
DraughnsC_GrnSpr	0.23	0.32	6.55	0.041	16.670870
					4
DraughnsC_MagBr	0.22	0.32	6.56	0.041	29.229
DuffByu_Jackson	0.23	0.33	6.64	0.042	2.3392
DuffByu_PtHud	0.26	0.36	6.58	0.042	0.39844
DuffB_DS_Jack	0.24	0.33	6.58	0.04	1.4631
DumplinC_DS_RR	0.24	0.34	6.57	0.042	41.295
DumplinC_I12	0.23	0.33	6.46	0.041	25.324
DumplinC_RR	0.22	0.31	6.53	0.042	18.4
DumplinC_US_LOC	0.22	0.31	6.55	0.042	19.116
DunnCrk_01	0.26	0.36	6.65	0.043	0.0200551
DunnCrk_02	0.23	0.32	6.9	0.041	0.52431
DunnCrk_03	0.26	0.36	5.59	0.055	1.0736
DunnCrk_04	0.25	0.36	5.57	0.055	0.76883
EastForkAmite_01	0.25	0.35	6.43	0.043	1.48113
EastForkAmite_02	0.27	0.38	6.16	0.048	0.74193
EastForkAmite_03	0.26	0.37	5.83	0.053	0.81036
EastForkAmite_04	0.26	0.37	5.87	0.051	0.62235
EFDumplin_Corbin	0.22	0.31	6.55	0.042	7.2889

	T = ==	1	T = ==	1	T 1
EFDumplin_RR	0.23	0.32	6.52	0.042	26.232
ELatCypB_Lavey	0.26	0.37	6.57	0.042	35.85
ELatCypB_LCB	0.23	0.33	6.63	0.041	25.929
ElbowBayou	0.14	0.2	10.91	0.015	5.5992
ElbowByu_Burbank	0.18	0.25	10.33	0.022	8.7407
ENGINEERDEPOT_	0.25	0.35	6.73	0.041	43.85
DS					
ENGINEERDEPOT_	0.28	0.39	7.8	0.034	65.794
US					
FeldersB_BrownRd	0.25	0.35	6.57	0.042	6.8142
FeldersB_DSJMay	0.24	0.34	6.6	0.042	9.1997
FeldersB_WC	0.23	0.33	7.18	0.042	27.423
FlanaganByu_SC	0.24	0.33	6.62	0.042	1.4968
FlanaganByu_01	0.24	0.34	7.33	0.041	0.14507
FlatLake	0.15	0.22	9.86	0.014	2.2075
GatorByu_Gage	0.17	0.24	9.64	0.019	8.9155
GatorByu_USGage	0.14	0.2	11.21	0.015	8.1179
GraysCrkBr_BMcD	0.25	0.36	6.55	0.042	46.965
GraysCrkBr_Dunn	0.24	0.34	6.3	0.046	28.611
GraysCrkBr_I12	0.24	0.33	6.57	0.042	39.004
GraysCrkBr_RR	0.25	0.36	6.45	0.041	33.595
GraysCrkBr_USI12	0.24	0.34	6.57	0.042	21.105
GraysCrkLat_RR	0.23	0.33	6.45	0.043	43.523650
					4
GraysCrk_Hwy1033	0.24	0.34	6.49	0.043	6.8541
GraysCrk_HWY16	0.25	0.35	6.52	0.042	18.054
GraysCrk_I12	0.24	0.34	6.57	0.042	34.692
GraysCrk_Julban	0.22	0.31	5.83	0.037	21.352
GraysCrk_NrAmite	0.24	0.34	6.53	0.042	5.2978
GraysCrk_RR	0.24	0.34	6.56	0.042	40.034
GraysCrk_US	0.25	0.35	6.55	0.042	41.93
GraysCrk_WaxD	0.24	0.33	6.57	0.042	32.992
HannaC_PrideBar	0.21	0.3	7.19	0.037	0.5311
HareLat_Airline	0.26	0.37	7.5	0.036	59.677689
					8
HareLat_OldHmd	0.26	0.37	7.32	0.034	66.379
HendByu_DSPtVinc	0.24	0.34	6.82	0.032	11.947
HendByu_HWY431	0.22	0.31	7.93	0.029	8.9403
	ı	1		1	

HendByu_Joboy	0.24	0.33	6.57	0.042	34.617
HendByu_NrPtVinc	0.24	0.34	6.52	0.039	30.919673 7
HendByu_US_Timbr	0.24	0.34	6.57	0.036	25.408
HogBayou_BC	0.26	0.37	6.53	0.042	0.0554442
HoneyCut_East	0.26	0.37	7.02	0.039	62.906
HoneyCut NrAmite	0.26	0.37	7.12	0.038	38.118
HoneyCut_West	0.27	0.38	6.95	0.04	60.956
HornsbyCrk_CnMkt	0.24	0.34	6.52	0.042	1.1765
HornsbyCrk_DSCan	0.25	0.35	6.56	0.042	1.6846
HornsbyCrk_FLBd	0.24	0.34	6.55	0.042	6.4186
HornsbyCrk_HCT1	0.23	0.32	6.48	0.043	2.6952
HornsbyCrk_HCT3	0.23	0.32	6.55	0.042	1.0932
HornsbyCT1_Corbn	0.23	0.32	6.53	0.042	1.6779
HornsbyCT3_Corbn	0.22	0.31	6.49	0.043	1.13
HornsbyCT3_HC	0.22	0.31	6.53	0.042	1.6137
HornsbyC_I12	0.24	0.34	6.5	0.041	7.9113
HubByu_DS_GS_P	0.22	0.31	6.53	0.041	2.1452
Н					
HubByu_GrnwelSpr	0.22	0.31	6.52	0.042	6.4368
HubByu_GS_PtHud	0.23	0.32	6.56	0.041	2.2186
HubByu_Peairs	0.22	0.31	6.47	0.043	0.23193
HunterByu_01	0.2	0.28	7.58	0.034	0.1569
HunterByu_02	0.2	0.28	7.46	0.034	0.27356
HunterByu_03	0.22	0.31	6.96	0.04	0.15378
HunterByu_04	0.21	0.29	7.41	0.034	0.98502
HunterByu_05	0.21	0.29	7.25	0.036	0.56793
HURRICANE_dsJO OR	0.25	0.36	7.2	0.038	50.413
HURRICANE_HOW ELL	0.28	0.39	7.77	0.035	53.338
HURRICANE Joor	0.27	0.38	8.02	0.034	45.383
HURRICANE Presc	0.26	0.36	7.19	0.039	50.75
t					
HURRICANE_Wildw	0.27	0.37	7.66	0.036	64.147
d					
IndianByu_PtHud	0.25	0.35	7.5	0.042	1.4659
IndianByu_UWB	0.24	0.34	7.54	0.042	1.2061
JacksB_Claycut	0.25	0.35	6.73	0.041	68.958

	1	1	1	1	1
JacksB_ParkFor	0.3	0.42	8.4	0.031	74.647
JoinerCrk_01	0.19	0.26	6.46	0.048	0.61189
JoinerCrk_02	0.25	0.35	4.83	0.067	0.21091
JoinerCrk_03	0.24	0.34	4.84	0.067	1.0162
JoinerCrk_04	0.25	0.35	4.7	0.069	1.743
JoinerCrk_05	0.23	0.32	5.47	0.059	0.62016
JoinerCrk_06	0.22	0.31	6.11	0.054	0.84062
JonesBayou	0.24	0.34	7.59	0.041	6.0732
JonesCr_Airline	0.34	0.48	10.81	0.017	95.218
JonesCr_FLBlvd	0.28	0.39	8.35	0.032	66.76
JonesCr_Mont	0.28	0.4	8.71	0.029	75.263
JonesCr_NrAmite	0.23	0.33	6.34	0.036	38.453
JonesCr_OldHamd	0.27	0.38	7.51	0.036	56.079
JonesCr_ONealLn	0.25	0.36	6.89	0.035	57.145
JonesCr_WeinerCr	0.27	0.39	7.73	0.034	63.281
KnoxBr_Firewood	0.26	0.37	7.07	0.036	72.379369
					8
KnoxBr_ONealLn	0.24	0.34	6.47	0.041	53.481
LCypByu_Comite	0.25	0.35	7.11	0.039	18.845
LCypByu_DS_Lavey	0.21	0.3	6.9	0.039	12.077
LCypByu_GBL	0.27	0.38	8.58	0.033	34.986
LCypByu_Hooper	0.23	0.33	7.48	0.041	15.195
LCypByu_Lavey	0.24	0.34	7.21	0.04	27.485
LCypByu_Thomas	0.24	0.33	7.3	0.041	10.955
LCypByu_US_SL	0.25	0.35	7.02	0.041	22.496
LilClyell_DS_I12	0.24	0.34	7.68	0.039	6.6012
LilClyell_I12	0.24	0.33	6.51	0.042	10.219
LilClyell_L01	0.25	0.36	6.53	0.043	11.71
LilClyell_Prloux	0.22	0.31	8.22	0.042	10.616
LilClyell_Range	0.23	0.33	6.53	0.043	31.982
LilClyell_RangLn	0.24	0.33	7.35	0.042	2.4114
LilClyell_Satsu	0.24	0.34	6.89	0.042	4.3528
LilSndyC2_DS_Jac	0.22	0.31	7.32	0.041	1.2195
LilSndyC2_DS_Mil	0.23	0.32	6.64	0.041	4.1537
LilSndyC2_DS_Per	0.23	0.32	6.46	0.041	1.0244
LilSndyC2_Jack	0.23	0.32	6.62	0.041	0.86029
LilSndyC2_Lib	0.23	0.32	6.33	0.044	0.73752
LilSndyC2_Milld	0.22	0.31	6.68	0.042	1.4694
	1	1	1	l .	

1:10 1 00 D :	0.00	0.00	0.50	0.044	4.5004
LilSndyC2_Peairs	0.23	0.32	6.59	0.041	1.5861
LilSndyC2_US_Jac	0.23	0.33	6.89	0.041	1.0739
LilSndyC2_US_LOC	0.21	0.3	7.32	0.036	0.52396
LilSndyC2_Wind	0.23	0.32	6.48	0.043	0.79088
LittleSandyCrk_01	0.2	0.28	7.42	0.035	1.1689
LittleSandyCrk_02	0.2	0.29	7.33	0.035	1.1052
LittleSandyCrk_03	0.19	0.27	7.57	0.033	0.89853
LittleSandyCrk_04	0.2	0.28	7.53	0.034	0.52756
LittleSandyCrk_05	0.2	0.28	7.46	0.035	0.4061514
LittleSandyCrk_06	0.21	0.29	7.14	0.037	0.40075
LivelyBT_FL	0.29	0.41	8.32	0.032	75.909029
					2
LivelyBT_LB	0.27	0.38	7.21	0.039	67.983
LivelyB_FLBlvd	0.28	0.39	7.72	0.035	53.934821
					8
LivelyB_HoneyCut	0.28	0.39	7.6	0.036	58.594
LivelyB_LBT	0.26	0.37	7.36	0.037	74.432
LivelyB_Pvt	0.25	0.36	6.57	0.042	13.974
LongSlashBranch	0.24	0.34	6.32	0.046	56.334942
					9
LSU_NP_MaySt	0.25	0.35	7.15	0.029	47.183
LSU_NP_Stanfrd	0.16	0.22	4.76	0.019	26.189
LWhiteByu_Comite	0.25	0.35	7.25	0.041	20.768
LWhiteByu_Pettit	0.23	0.33	7.57	0.041	7.8817
LWhiteByu_US_Pet	0.24	0.34	7.77	0.041	12.131588
MidClyellT3	0.23	0.32	6.57	0.042	6.4077
MidClyellT5_CnMk	0.23	0.32	6.52	0.042	9.8923
MidClyellT5_MC	0.23	0.33	6.55	0.042	5.8575
MidClyellT5_Sprg	0.22	0.31	6.53	0.042	3.8568
MidClyellT6_GalG	0.24	0.33	6.55	0.042	25.157
MidClyellT6_MC	0.22	0.31	6.54	0.042	7.0861
MidClyell_CB	0.25	0.35	6.94	0.04	2.0796
MidClyell_CnMkt	0.24	0.33	6.5	0.043	2.3343
MidClyell_FLBlvd	0.23	0.32	6.57	0.042	7.8818
MidClyell_HoodRd	0.24	0.34	6.56	0.042	1.1923
MidClyell_I12	0.24	0.34	6.59	0.041	13.08
MidClyell_MCT1	0.23	0.32	6.5	0.043	1.9882
MidClyell MCT3	0.23	0.32	6.57	0.042	1.8422
<u>, </u>	<u> </u>	1	1	<u> </u>	

MidClyell_MCT5	0.24	0.34	6.56	0.042	8.1081
MidClyell MCT6	0.23	0.32	6.55	0.042	10.358
MidClyell_TylrBy	0.24	0.34	6.55	0.042	4.1254
MidClyell_US_LOC	0.21	0.29	7.25	0.04	1.5478
MidClyell_WeissR	0.23	0.32	6.54	0.042	1.0476
MillCrk CarsonRd	0.23	0.32	6.51	0.041	2.6651
MillCrk MahoneyRd	0.2	0.28	7.47	0.034	0.75225
MillCrk_PrideBar	0.22	0.31	6.36	0.039	1.3664
MillC_SandyC	0.23	0.32	6.57	0.042	1.1255
MillersCT I12	0.24	0.34	6.57	0.042	35.958
MillersCT MC	0.24	0.33	6.45	0.041	49.083
MillersCT_UnT	0.24	0.34	6.55	0.043	60.303
MillersC Julban	0.25	0.35	6.54	0.042	20.162
MolerB_CnMkt	0.22	0.31	6.56	0.042	2.8258
MolerB_Springfld	0.22	0.31	6.55	0.042	10.191814
					5
MolerB_WC	0.21	0.3	6.5	0.041	11.159
MuddyCrk_Henry	0.25	0.35	6.65	0.041	42.624
MuddyCrk_HWY42	0.24	0.34	6.6	0.04	26.745
MuddyCrk_LilPra	0.25	0.35	6.52	0.039	27.106
MuddyCrk_NrManch	0.25	0.35	6.71	0.038	19.693
MuddyCrk_NrOakGr	0.25	0.36	6.57	0.037	27.115082
					5
NBrWardsCr_atBR	0.28	0.39	8.14	0.032	63.914
NBrWardsCr_FL	0.33	0.46	10.08	0.021	87.244
NBrWardsCr_Hare	0.31	0.43	9.44	0.025	79.578
NBrWardsCr_I10	0.28	0.39	8.07	0.033	62.87
NewR_Maurepas	0.29	0.41	11.78	0.006	0.0306776
ROBERTCN_dsJOO	0.23	0.32	6.88	0.041	14.541
R					
ROBERTCN_Grnwe	0.25	0.35	7.49	0.037	49.046
II					
ROBERTCN_Joor	0.23	0.32	6.87	0.042	14.931803
					9
ROBERTCN_T	0.24	0.33	6.74	0.041	48.94
ROBERTCN_US_L	0.26	0.36	7.06	0.039	40.771
OC					
RobertsByu_01	0.2	0.28	7.54	0.033	1.8315
RobertsByu_02	0.19	0.27	7.62	0.032	0.20272

RobertsByu_03	0.2	0.27	7.58	0.033	0.30076
RobertsByu_04	0.2	0.28	7.25	0.036	0.2429991
SandyCrk_01	0.24	0.34	6.78	0.04	1.3693
SandyCrk_02	0.24	0.33	6.77	0.039	1.8517
SandyCrk_03	0.22	0.3	7.05	0.036	0.313
SandyCrk_04	0.25	0.35	6.55	0.042	0.34251
SandyCrk_05	0.25	0.35	6.55	0.042	1.238
SandyCrk_06	0.24	0.33	6.64	0.041	1.0984
SandyCrk_07	0.25	0.34	6.31	0.044	1.1925
SandyCrk_08	0.23	0.33	6.58	0.04	1.0726
SandyCrk_09	0.24	0.34	6.52	0.043	0.23322
SandyCrk_10	0.21	0.3	6.37	0.041	0.92948
SandyCrk_11	0.25	0.35	6.47	0.043	0.11065
SandyCrk_12	0.22	0.31	6.62	0.041	1.5142
SandyCrk_13	0.22	0.31	6.89	0.041	0.8221
SandyCrk_14	0.21	0.29	7.41	0.036	0.55571
SandyCrk_15	0.21	0.3	7.84	0.039	0.13221
SandyCrk_16	0.2	0.28	7.43	0.035	0.33668
SandyCrk_17	0.22	0.31	6.79	0.04	0.17505
SandyCrk_18	0.22	0.31	6.61	0.042	0.82661
SandyCrk_19	0.21	0.3	7.08	0.038	0.33433
SandyCrk_20	0.22	0.31	7	0.039	0.81234
SandyC_AlphonFor	0.22	0.3	5.87	0.05	0.60771
SandyC_BeaverPnd	0.23	0.33	6.5	0.04	1.6434
SandyC_FB	0.24	0.34	6.48	0.043	0.27765
SandyC_GrnwelSpr	0.23	0.32	6.37	0.043	2.4514
SandyC_MillC	0.23	0.33	6.51	0.042	0.85744
SandyC_PrideBay	0.23	0.33	6.44	0.041	2.9131
SandyC_StnyPtBur	0.23	0.32	6.47	0.041	1.2854
SandyC_UN3SC	0.25	0.35	6.51	0.043	0.37854
SandyRun_01	0.25	0.35	4.78	0.068	0.86981
SandyRun_02	0.24	0.34	5.07	0.064	0.75992
SandyRun_03	0.22	0.31	5.77	0.055	1.1845
SandyRun_04	0.19	0.27	6.41	0.048	1.164
SandyRun_05	0.2	0.29	6.28	0.05	0.60542
SandyRun_06	0.2	0.28	6.47	0.048	0.84378
SandyRun_07	0.24	0.33	5.55	0.06	0.215
SandyRun_08	0.22	0.31	6.74	0.045	0.25238

ScalousCr	0.21	0.29	7.46	0.036	0.48889
SCanal_Dyer	0.23	0.32	8.61	0.042	3.5412
SCanal_Plank	0.24	0.34	7.4	0.041	1.9499
ShoeCT1_SC	0.24	0.34	6.56	0.042	32.615549
					3
ShoeCT1_US_LOC	0.25	0.35	7.09	0.039	32.122
ShoeC_Comite	0.24	0.34	6.57	0.037	15.75
ShoeC_DS_Hooper	0.23	0.32	6.52	0.042	21.701
ShoeC_Gurney	0.25	0.35	6.49	0.041	10.216
ShoeC_Hooper	0.26	0.36	7.24	0.038	19.63
ShoeC_Pecos	0.24	0.34	6.59	0.039	19.990062
					8
ShoeC_SCT1	0.23	0.32	6.73	0.041	14.753
SouthCanal_Div	0.23	0.33	8.5	0.04	9.8705
SouthCanal_HWY19	0.24	0.33	9.11	0.039	14.358
SOUTHLATERAL	0.25	0.35	6.72	0.042	37.774
SouthSandyRun_01	0.25	0.35	4.64	0.069	0.0023245
SouthSandyRun_02	0.25	0.35	5.14	0.062	0.269
SouthSandyRun_03	0.25	0.35	5.02	0.064	0.96894
SouthSandyRun_04	0.25	0.35	5.04	0.064	2.2798
SpillersCT2_	0.25	0.35	7.33	0.037	2.5698
SpillersCT2_SC	0.23	0.32	6.52	0.038	4.2887
SpillersCT2_Wei	0.23	0.33	6.92	0.039	5.7996
SpillersCT2_3	0.22	0.31	6.3	0.048	4.4935
SpillersC_DS_Sim	0.22	0.31	6.55	0.042	4.6541
SpillersC_Hess	0.21	0.3	5.91	0.051	6.2163
SpillersC_HWY16	0.23	0.33	6.38	0.043	11.371
SpillersC_Sims	0.21	0.3	6.13	0.048	0.95572
SpillersC_WeissRd	0.22	0.3	6.18	0.048	1.5157
StoneByu_01	0.23	0.32	6.12	0.039	1.2894
StoneByu_02	0.25	0.35	6.53	0.042	1.8951
StoneByu_03	0.23	0.32	6.84	0.039	1.4295
StoneByu_04	0.2	0.29	7.41	0.035	0.35117
StoneByu_05	0.19	0.26	6.99	0.032	0.79683
SUB_BLACKCRK_0	0.23	0.33	6.39	0.041	1.4065
1					
SUB_BLACKCRK_0	0.24	0.34	6.4	0.041	2.1666
2					

SUB_BLACKCRK_0	0.25	0.35	6.54	0.042	0.27352
SUB_BLACKCRK_0	0.25	0.35	6.5	0.041	0.4505
SUB_BLACKCRK_0	0.26	0.36	6.52	0.042	0.52858
SUB_COMITENP_0	0.26	0.37	6.57	0.042	2.0461
SUB_COMITENP_0 2	0.25	0.35	6.41	0.049	2.1397
SUB COMITE 01	0.26	0.37	6.64	0.046	1.6188
SUB COMITE 02	0.21	0.3	6.98	0.037	0.49245
SUB COMITE 03	0.23	0.32	6.69	0.041	0.28324
SUB COMITE 04	0.23	0.33	6.58	0.043	0.11576
SUB COMITE 05	0.24	0.34	6.56	0.042	0.36222
SUB COMITE 06	0.22	0.31	6.98	0.039	0.18989
SUB COMITE 07	0.21	0.29	7.21	0.036	0.28391
SUB_COMITE_09	0.21	0.29	7.05	0.036	0.7141
SUB_COMITE_10	0.23	0.32	6.58	0.043	0.71879
SUB_COMITE_12	0.2	0.29	6.38	0.037	0.0105962
SUB_COMITE_13	0.22	0.31	6.95	0.038	1.9055
SUB_COMITE_14	0.22	0.31	6.87	0.039	1.7058
SUB_COMITE_15	0.21	0.3	6.94	0.037	0.70593
SUB_COMITE_18	0.22	0.3	6.4	0.039	0.53936
SUB_COMITE_19	0.23	0.33	6.63	0.041	0.59163
SUB_COMITE_21	0.22	0.31	6.58	0.055	0.70051
SUB_COMITE_22	0.22	0.31	6.84	0.05	0.72005
SUB_COMITE_23	0.24	0.34	6.22	0.085	0.80115
SUB_COMITE_25	0.23	0.32	6.19	0.148	1.0536
SUB_COMITE_26	0.23	0.33	6.44	0.111	0.67587
SUB_DOYLEBAYO	0.25	0.35	6.57	0.042	1.1047
U_01					
SUB_DOYLEBAYO U_02	0.24	0.34	6.55	0.042	0.30231
SUB_DOYLEBAYO U 03	0.26	0.36	6.56	0.042	0.63575
SUB_DOYLEBAYO U_05	0.25	0.35	6.57	0.042	0.60582

SUB_DOYLEBAYO U 06	0.24	0.34	7.17	0.041	0.79754
SUB_DOYLEBAYO U 07	0.25	0.35	6.5	0.04	1.8121
SUB_DOYLEBAYO U_08	0.25	0.35	6.81	0.041	1.8686
SUB_DOYLENP1_0	0.25	0.36	6.56	0.042	13.747
SUB_DOYLENP1_0 2	0.25	0.35	6.52	0.042	0.76793
SUB_FISHERBAYO U 01	0.2	0.29	7.44	0.034	0.20443
SUB_FISHERBAYO U 02	0.2	0.28	7.43	0.034	0.38516
SUB_FISHERBAYO U 03	0.2	0.29	7.38	0.034	0.33422
SUB_HOGBAYOU_ 01	0.25	0.35	6.53	0.042	0.45564
SUB_HOGBAYOU_ 02	0.25	0.35	6.55	0.042	0.28731
SUB_IRONBAYOU_ 01	0.24	0.34	6.56	0.042	1.3379
SUB_IRONBAYOU_ 02	0.24	0.34	6.55	0.042	1.0144
SUB_IRONBAYOU_ 03	0.26	0.36	6.53	0.042	1.1182
SUB_IRONBAYOU_ 04	0.26	0.36	6.54	0.042	0.58875
SUB_KNIGHTONBA YOU_01	0.2	0.28	7.38	0.035	0.60933
SUB_KNIGHTONBA YOU 02	0.2	0.28	7.35	0.036	0.13636
SUB_KNIGHTONBA YOU_03	0.2	0.28	7.45	0.034	0.31818
SUB_KNIGHTONBA YOU_04	0.22	0.3	6.78	0.04	0.12363
SUB_LEWISCRK_0	0.21	0.3	7.09	0.037	8.7155

SUB_LEWISCRK_0	0.21	0.3	7.05	0.039	11.130223
2					8
SUB_LEWISCRK_0	0.21	0.3	6.82	0.039	1.5511
3					
SUB_LITCOMITE_0	0.23	0.32	7.99	0.042	0.80217
1					
SUB_LITCOMITE_0	0.23	0.32	6.78	0.041	0.038852
2					
SUB_LITCOMITE_0	0.24	0.34	6.63	0.041	0.76748
3	0.00	0.24	0.40	0.000	0.0007
SUB_LITREDWOO	0.22	0.31	6.12	0.039	0.9207
D_01	0.24	0.33	6.49	0.041	0.23051
SUB_LITREDWOO D 02	0.24	0.33	0.49	0.041	0.23031
SUB_LITREDWOO	0.24	0.33	6.66	0.041	0.31199
D 03	0.24	0.55	0.00	0.041	0.51155
SUB_LITREDWOO	0.22	0.3	6.83	0.039	0.40867
D 04	0.22	0.0	0.00	0.000	0.10001
SUB_LITREDWOO	0.2	0.28	7.45	0.034	0.73053
D 05					
SUB_MONAHANBA	0.2	0.28	7.5	0.033	1.1523
YOU_01					
SUB_MONAHANBA	0.2	0.28	7.29	0.034	0.55601
YOU_02					
SUB_PRETTYCRK_	0.23	0.32	7	0.039	0.48855
01					
SUB_PRETTYCRK_	0.22	0.31	7.04	0.039	0.41612
02					
SUB_PRETTYCRK_	0.22	0.31	7.01	0.037	0.5238
03					
SUB_PRETTYCRK_	0.2	0.28	7.48	0.034	0.0981933
04	0.04	0.04	0.07	0.040	4.0005
SUB_PRETTYCRK_	0.24	0.34	6.37	0.046	1.0385
05	0.04	0.00	7.4	0.000	0.57777
SUB_PRETTYCRK_	0.21	0.29	7.1	0.036	0.57777
06	0.22	0.24	6.00	0.020	0.04602
SUB_PRETTYCRK_	0.22	0.31	6.99	0.039	0.94693
07					

SUB_PRETTYCRK_	0.23	0.32	6.46	0.041	11.545
08 SUB_PRETTYCRK_	0.21	0.29	5.86	0.038	0
09					
SUB_REDWOODC	0.19	0.27	7.61	0.032	2.1186
RK_01	0.04	0.00		0.000	0.000
SUB_REDWOODC RK_02	0.21	0.29	7.05	0.036	2.9923
SUB_REDWOODC RK_03	0.21	0.3	7.25	0.036	0.83515
SUB_REDWOODC RK 04	0.22	0.31	6.82	0.039	0.40094
SUB_REDWOODC RK_05	0.24	0.34	6.56	0.042	0.12138
SUB_REDWOODC RK 06	0.22	0.32	6.93	0.038	2.3871
SUB_REDWOODC RK_08	0.23	0.32	6.63	0.04	0.34178
SUB_REDWOODC RK_09	0.2	0.28	7.39	0.034	1.1349
SUB_REDWOODC RK 10	0.23	0.32	6.85	0.039	0.34591
SUB_REDWOODC RK 11	0.25	0.35	6.59	0.041	0.9521915
SUB_REDWOODC RK 12	0.23	0.32	6.94	0.038	0.65718
SUB_REDWOODC RK_13	0.24	0.33	6.55	0.042	0.59666
SUB_REDWOODC RK 14	0.24	0.34	6.55	0.042	0.46249
SUB_REDWOODC RK 15	0.25	0.35	6.77	0.041	0.27253
SUB_REDWOODC RK 16	0.24	0.34	6.49	0.042	0.0245973
SUB_REDWOODC RK 17	0.25	0.35	6.88	0.041	0.34784
SUB_REDWOODC RK_18	0.24	0.34	6.47	0.042	2.3792

SUB_REDWOODN P	0.25	0.35	6.55	0.042	0.0905253
SUB_SCHLEIBAYO U_01	0.2	0.29	7.47	0.034	1.5465
SUB_SCHLEIBAYO U_02	0.21	0.3	7.21	0.036	0.86917
SUB_SCHLEIBAYO U_03	0.21	0.29	7.11	0.037	0.78975
SUB_SESSIONSBA YOU_NP	0.2	0.28	7.54	0.034	0.30252
SUB_SESSIONSBA YOU_01	0.2	0.28	7.42	0.034	0.12788
SUB_SESSIONSBA YOU_02	0.21	0.29	7.25	0.037	0.69764
SUB_SESSIONSBA YOU_03	0.21	0.29	7.11	0.037	0.20625
SUB_SESSIONSBA YOU_04	0.22	0.31	6.49	0.043	0.73677
SUB_UNT_LEWISC RK	0.2	0.28	7.49	0.034	7.6447
SUB_UNT3_REDW OOD 1	0.26	0.37	6.57	0.042	3.6326
SUB_UNT3_REDW OOD 2	0.26	0.36	6.57	0.042	0.36478
SUB_UN_UN3_RED WOOD	0.26	0.37	6.57	0.042	3.8889
SUB_UN_UN4_RED WOOD_1	0.25	0.35	6.56	0.042	0.44736
SUB_UN_UN4_RED WOOD_2	0.25	0.36	6.56	0.042	0.54076
SUB_UN_UN4_RED WOOD 3	0.24	0.33	6.5	0.043	0.342
SUB_UN3_REDWO OD 02	0.25	0.35	6.96	0.041	1.2688
SUB_UN4_REDWO OD_01	0.25	0.36	6.57	0.042	1.45
SUB_UN4_REDWO OD_02	0.25	0.35	6.49	0.042	0.83152

SUB_WALNUTBR_ 01	0.25	0.35	6.56	0.042	0.28411
SUB_WALNUTBR_ 02	0.25	0.35	6.56	0.042	0.28423
SUB_WALNUTBR_ 03	0.24	0.34	6.38	0.043	0.40457
SUB_WFRKLITCO MITE_01	0.22	0.3	8.29	0.042	0.45736
SUB_WFRKLITCO MITE_02	0.22	0.31	6.99	0.04	0.46593
SUB_WHITEBAYO U_01	0.25	0.35	6.57	0.042	0.12906
SUB_WHITEBAYO U_02	0.25	0.35	6.51	0.041	0.0853496
SUB_WHITEBAYO U_03	0.26	0.36	6.53	0.042	0.51646
SUB_WHITEBAYO U_04	0.26	0.36	6.56	0.042	0.62323
SUB_WHITEBAYO U_05	0.26	0.37	6.56	0.042	0.38068
SUB_WHITEBAYO U_06	0.25	0.35	6.51	0.041	0.45431
TaberC_CarsonRd	0.23	0.32	6.54	0.041	0.95069
TaberC_HannaC	0.23	0.32	6.84	0.04	1.0851
TaylorByu_DS_I12	0.24	0.34	6.58	0.041	15.256
TaylorByu_FL	0.23	0.32	6.57	0.042	46.74
TaylorByu_I12	0.23	0.32	6.51	0.041	35.833
TaylorByu_RR	0.23	0.32	6.55	0.042	24.156579
					3
UnDuffByu_DS	0.22	0.31	7.3	0.041	0.18774
UnDuffByu_US	0.24	0.34	6.67	0.042	15.916
UnT_GreenwellSp	0.23	0.32	6.55	0.041	1.4778
UNT1ADarlingCrk_0 1	0.25	0.35	4.71	0.069	0.55119
UNT1BlackCrk_01	0.25	0.35	5.06	0.064	0.37894
UNT1BluffCrk_01	0.22	0.3	7.15	0.036	0.88006
UNT1DarlingCrk_01	0.2	0.28	6.2	0.051	0.72634
UNT1DarlingCrk_02	0.24	0.33	4.76	0.064	0.64466
UNT1DarlingCrk_03	0.24	0.33	5.92	0.059	0.31344

UNT1DunnCrk_01	0.2	0.28	7.32	0.036	0.85969
UNT1SouthSandyR	0.23	0.33	5.19	0.061	1.3985
un_01					
UNT1WoodlandCrk_	0.25	0.35	6.38	0.044	0.7437
01					
UNT2ASSandyRun	0.24	0.34	4.49	0.068	0.19125
UNT2BlackCrk_01	0.24	0.34	5	0.065	2.4222
UNT2BluffCrk_01	0.2	0.28	7.54	0.034	0.80456
UNT2DarlingCrk_01	0.25	0.35	4.9	0.066	0.91286
UNT2DarlingCrk_02	0.25	0.35	4.71	0.068	1.2532
UNT2DarlingCrk_03	0.25	0.35	4.93	0.065	0.90147
UNT2SouthSandyR	0.25	0.35	4.61	0.07	0
un_01					
UNT2SouthSandyR	0.24	0.34	4.92	0.064	0.167625
un_02					
UNT3ADarlingCrk_0	0.24	0.34	5.19	0.062	0.00525
1					
UNT3BlackCrk_01	0.23	0.33	5.35	0.061	0.81201
UNT3DarlingCrk_01	0.24	0.34	5.09	0.065	0.6084
UNT3DarlingCrk_02	0.23	0.32	5.75	0.055	0.0105
UNT3DarlingCrk_03	0.23	0.32	5.83	0.054	0.65109
UNT3DarlingCrk_04	0.21	0.3	6.15	0.05	0.36714
UnT3SandyC_Librt1	0.24	0.34	6.48	0.041	1.6329
UnT3SandyC_Librt2	0.23	0.33	6.49	0.043	2.3916
UNT3SouthSandyR	0.25	0.35	4.63	0.07	0.14955
un_01					
UNT3SouthSandyR	0.25	0.35	4.69	0.069	1.2053
un_02					
UNT3SouthSandyR	0.25	0.35	4.78	0.067	1.0342
un_03					
UNT4ADarlingCrk_0	0.25	0.35	5.19	0.062	0.14514
1					
UNT4ADarlingCrk_0	0.25	0.35	5.57	0.056	0.43038
2					
UNT4DarlingCrk_01	0.25	0.36	5.15	0.064	0.54252
UNT4DarlingCrk_02	0.25	0.34	5.37	0.06	0.0292387
UNT4DarlingCrk_03	0.23	0.33	6.24	0.048	0
Un_UpperWhiteByu	0.23	0.32	5.95	0.038	0.17049
Un1LilSndyC2_DS	0.23	0.33	7.1	0.042	1.913

Un1LilSndyC2_US	0.25	0.35	6.57	0.042	0.9646
Un1MillC_PrideB	0.22	0.31	6.59	0.042	1.3394
Un1MillC_US_LOC	0.22	0.31	6.57	0.042	1.2274
Un1SandyC	0.23	0.32	6.89	0.041	0.0152592
Un2LilSndyC2_DS	0.23	0.32	6.62	0.041	0.44166
Un2LilSndyC2_US	0.23	0.33	6.99	0.041	1.1373
Un2_NBrWards_DS	0.24	0.34	6.73	0.041	59.1
Un2_NBrWards_US	0.28	0.39	8.09	0.033	60.755
Un3LilSndyC2_DS	0.23	0.33	6.57	0.042	1.169
Un3LilSndyC2_US	0.24	0.34	6.55	0.041	3.2331
Un4LilSndyC2	0.23	0.32	6.53	0.041	2.9856
Un4SandyC_DS	0.24	0.34	6.24	0.041	3.8327
Un4SandyC_US	0.23	0.32	6.55	0.04	3.7883
UpperWhiteByu_DS	0.25	0.35	7.62	0.042	3.0444
UpperWhiteByu_US	0.25	0.36	7.43	0.042	3.7977
UWhiteByu_Div	0.25	0.35	6.57	0.04	0.0067967
UWhiteByu_DW	0.25	0.36	6.55	0.042	1.5842
UWhiteByu_Hudson	0.25	0.35	6.62	0.042	4.28
UWhiteByu_HWY64	0.25	0.35	6.75	0.042	11.154
UWhiteByu_LowZac	0.25	0.35	7.08	0.041	16.542506
					4
UWhiteByu_US_Div	0.24	0.34	6.61	0.041	0.3650287
UWhiteByu_UT	0.25	0.36	6.87	0.042	1.835
WardsCr_Bluebon	0.32	0.45	9.69	0.023	75.374
WardsCr_Choctaw	0.28	0.4	0.04		
Manda On Oallana		0.7	8.21	0.032	66.748
WardsCr_College	0.26	0.37	7.71	0.032 0.035	66.748 39.77051
WardsCr_College WardsCr_EssenLn	0.26 0.27				
		0.37	7.71	0.035	39.77051
WardsCr_EssenLn	0.27	0.37 0.38	7.71 7.96	0.035 0.035	39.77051 46.246
WardsCr_EssenLn WardsCr_GovtSt	0.27 0.29	0.37 0.38 0.42	7.71 7.96 8.92	0.035 0.035 0.028	39.77051 46.246 68.997
WardsCr_EssenLn WardsCr_GovtSt WardsCr_GusYoung	0.27 0.29 0.25	0.37 0.38 0.42 0.36	7.71 7.96 8.92 7.07	0.035 0.035 0.028 0.038	39.77051 46.246 68.997 69.096
WardsCr_EssenLn WardsCr_GovtSt WardsCr_GusYoung WardsCr_Highland	0.27 0.29 0.25 0.24	0.37 0.38 0.42 0.36 0.33	7.71 7.96 8.92 7.07 7.03	0.035 0.035 0.028 0.038 0.039	39.77051 46.246 68.997 69.096 41.828
WardsCr_EssenLn WardsCr_GovtSt WardsCr_GusYoung WardsCr_Highland WardsCr_I10_DS	0.27 0.29 0.25 0.24 0.23	0.37 0.38 0.42 0.36 0.33 0.32	7.71 7.96 8.92 7.07 7.03 7.84	0.035 0.035 0.028 0.038 0.039 0.039	39.77051 46.246 68.997 69.096 41.828 56.834
WardsCr_EssenLn WardsCr_GovtSt WardsCr_GusYoung WardsCr_Highland WardsCr_I10_DS WardsCr_I10_US	0.27 0.29 0.25 0.24 0.23 0.27	0.37 0.38 0.42 0.36 0.33 0.32 0.38	7.71 7.96 8.92 7.07 7.03 7.84 7.79	0.035 0.035 0.028 0.038 0.039 0.039 0.035	39.77051 46.246 68.997 69.096 41.828 56.834 50.617
WardsCr_EssenLn WardsCr_GovtSt WardsCr_GusYoung WardsCr_Highland WardsCr_I10_DS WardsCr_I10_US WardsCr_Manchac	0.27 0.29 0.25 0.24 0.23 0.27 0.24	0.37 0.38 0.42 0.36 0.33 0.32 0.38 0.34	7.71 7.96 8.92 7.07 7.03 7.84 7.79 7.47	0.035 0.035 0.028 0.038 0.039 0.039 0.035 0.037	39.77051 46.246 68.997 69.096 41.828 56.834 50.617 52.066
WardsCr_EssenLn WardsCr_GovtSt WardsCr_GusYoung WardsCr_Highland WardsCr_I10_DS WardsCr_I10_US WardsCr_Manchac	0.27 0.29 0.25 0.24 0.23 0.27 0.24	0.37 0.38 0.42 0.36 0.33 0.32 0.38 0.34	7.71 7.96 8.92 7.07 7.03 7.84 7.79 7.47	0.035 0.035 0.028 0.038 0.039 0.039 0.035 0.037	39.77051 46.246 68.997 69.096 41.828 56.834 50.617 52.066 69.394029
WardsCr_EssenLn WardsCr_GovtSt WardsCr_GusYoung WardsCr_Highland WardsCr_I10_DS WardsCr_I10_US WardsCr_Manchac WardsCr_PecueLn	0.27 0.29 0.25 0.24 0.23 0.27 0.24 0.25	0.37 0.38 0.42 0.36 0.33 0.32 0.38 0.34 0.35	7.71 7.96 8.92 7.07 7.03 7.84 7.79 7.47 7.78	0.035 0.035 0.028 0.038 0.039 0.039 0.035 0.037 0.034	39.77051 46.246 68.997 69.096 41.828 56.834 50.617 52.066 69.394029 6
WardsCr_EssenLn WardsCr_GovtSt WardsCr_GusYoung WardsCr_Highland WardsCr_I10_DS WardsCr_I10_US WardsCr_Manchac WardsCr_PecueLn WardsCr_SiegenLn	0.27 0.29 0.25 0.24 0.23 0.27 0.24 0.25	0.37 0.38 0.42 0.36 0.33 0.32 0.38 0.34 0.35	7.71 7.96 8.92 7.07 7.03 7.84 7.79 7.47 7.78	0.035 0.035 0.028 0.038 0.039 0.039 0.035 0.037 0.034	39.77051 46.246 68.997 69.096 41.828 56.834 50.617 52.066 69.394029 6 68.25

WOCYPEINT_SpridR 0.22 0.31 6.54 0.042 1.9782 WCIyell_ArnoldR 0.23 0.32 6.56 0.042 2.9041 WCIyell_CnMkt 0.22 0.31 6.57 0.042 1.3161 WCIyell_DS_Arnid 0.23 0.32 6.54 0.042 1.5639 WCIyell_DS_Inl2 0.24 0.34 6.51 0.041 14.921 WCIyell_DS_Spr 0.22 0.32 6.56 0.042 3.9616 WCIyell_HoodRd 0.24 0.34 6.61 0.042 5.923 WCIyell_HoodMay 0.24 0.34 6.56 0.042 5.923 WCIyell_Dalmayr 0.24 0.34 6.56 0.042 2.539 WCIyell_NanWes 0.21 0.3 6.56 0.042 21.337927 WCIyell_SprgfidR 0.23 0.33 6.51 0.042 21.3397927 WCIyell_SprgfidR 0.22 0.31 6.55 0.042 22.8439 WeinerCr_DS 0.28	WClyellT1_Pvt	0.23	0.32	6.37	0.045	1.921
WClyell_ArnoldR 0.23 0.32 6.56 0.042 2.9041 WClyell_CnMkt 0.22 0.31 6.57 0.042 1.3161 WClyell_DS_Arnld 0.23 0.32 6.54 0.042 15.639 WClyell_DS_I12 0.24 0.34 6.51 0.041 14.921 WClyell_DS_Spr 0.22 0.32 6.56 0.042 3.9616 WClyell_DS_Spr 0.22 0.32 6.56 0.042 3.9616 WClyell_HoodRd 0.24 0.34 6.61 0.042 5.9223 WClyell_JoeMayR 0.24 0.34 6.56 0.042 15.359 WClyell_NanWes 0.21 0.3 5.96 0.05 12.071779 3 WClyell_RR 0.23 0.33 6.51 0.042 21.397927 WClyell_SprgfldR 0.22 0.31 6.55 0.042 2.8439 WeinerCr_DS 0.28 0.39 8.06 0.031 79.517 WeinerCr_US 0.31<						
WClyell_CnMkt 0.22						
WClyell_DS_Arnid 0.23 0.32 6.54 0.042 15.639 WClyell_DS_I12 0.24 0.34 6.51 0.041 14.921 WClyell_DS_Spr 0.22 0.32 6.56 0.042 3.9616 WClyell_HoodRd 0.24 0.34 6.61 0.042 5.9223 WClyell_JoeMayR 0.24 0.34 6.56 0.041 22.423 WClyell_JoeMayR 0.24 0.34 6.56 0.042 15.359 WClyell_NanWes 0.21 0.3 5.96 0.05 12.071779 3 WClyell_SprgfldR 0.22 0.31 6.55 0.042 21.397927 WClyell_SprgfldR 0.22 0.31 6.55 0.042 22.8439 WeinerCr_DS 0.28 0.39 8.06 0.031 79.517 WeinerCr_I2 0.31 0.44 9.15 0.027 80.792 WeishGullyT1 0.26 0.37 6.57 0.039 27.939 WelshGul_Manchac <						
WClyell_DS_I12						
WClyell_DS_Spr 0.22 0.32 6.56 0.042 3.9616 WClyell_HoodRd 0.24 0.34 6.61 0.042 5.9223 WClyell_I12 0.23 0.33 6.49 0.041 22.423 WClyell_JoeMayR 0.24 0.34 6.56 0.042 15.359 WClyell_NanWes 0.21 0.3 5.96 0.05 12.071779 WClyell_RR 0.23 0.33 6.51 0.042 21.397927 WClyell_SprgfldR 0.22 0.31 6.55 0.042 2.8439 WeinerCr_DS 0.28 0.39 8.06 0.031 79.517 WeinerCr_I12 0.31 0.44 9.15 0.027 86.355 WeinerCr_US 0.31 0.43 9.02 0.027 80.792 WelshGullyT1 0.26 0.37 6.57 0.039 27.939 WelshGul_Manchac 0.21 0.3 6.96 0.041 10.505 WelshGul_NrPrair 0.26 0.36 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
WClyell_HoodRd 0.24 0.34 6.61 0.042 5.9223 WClyell_I12 0.23 0.33 6.49 0.041 22.423 WClyell_JoeMayR 0.24 0.34 6.56 0.042 15.359 WClyell_NanWes 0.21 0.3 5.96 0.05 12.071779 WClyell_SprgfldR 0.23 0.33 6.51 0.042 21.397927 WClyell_SprgfldR 0.22 0.31 6.55 0.042 2.8439 WeinerCr_DS 0.28 0.39 8.06 0.031 79.517 WeinerCr_I12 0.31 0.44 9.15 0.027 86.355 WeinerCr_US 0.31 0.43 9.02 0.027 80.792 WelshGullyT1 0.26 0.37 6.57 0.039 27.939 WelshGul_MrPrair 0.26 0.36 6.57 0.039 46.49 WestForkAmite_01 0.27 0.38 6.27 0.046 1.505655 WestForkAmite_02 0.27 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
WClyell_I12 0.23 0.33 6.49 0.041 22.423 WClyell_JoeMayR 0.24 0.34 6.56 0.042 15.359 WClyell_NanWes 0.21 0.3 5.96 0.05 12.071779 WClyell_SprgfldR 0.23 0.33 6.51 0.042 21.397927 WClyell_SprgfldR 0.22 0.31 6.55 0.042 2.8439 WeinerCr_DS 0.28 0.39 8.06 0.031 79.517 WeinerCr_I12 0.31 0.44 9.15 0.027 86.355 WeinerCr_US 0.31 0.43 9.02 0.027 80.792 WelshGullyT1 0.26 0.37 6.57 0.039 27.939 WelshGul_NrPrair 0.26 0.36 6.57 0.039 46.49 WestForkAmite_01 0.27 0.38 6.27 0.046 1.505565 WestForkAmite_02 0.27 0.38 5.87 0.052 0.59976 WestForkAmite_04 0.26						
WClyell_JoeMayR 0.24 0.34 6.56 0.042 15.359 WClyell_NanWes 0.21 0.3 5.96 0.05 12.071779 WClyell_RR 0.23 0.33 6.51 0.042 21.397927 WClyell_SprgfldR 0.22 0.31 6.55 0.042 2.8439 WeinerCr_DS 0.28 0.39 8.06 0.031 79.517 WeinerCr_US 0.31 0.44 9.15 0.027 86.355 WeinerCr_US 0.31 0.43 9.02 0.027 80.792 WelshGullyT1 0.26 0.37 6.57 0.039 27.939 WelshGul_Manchac 0.21 0.3 6.96 0.041 10.505 WelshGul_NrPrair 0.26 0.36 6.57 0.039 46.49 WestForkAmite_01 0.27 0.38 6.27 0.046 1.505565 WestForkAmite_02 0.27 0.38 5.87 0.052 1.5201 WestForkAmite_04 0.26 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
WClyell_NanWes 0.21 0.3 5.96 0.05 12.071779 WClyell_RR 0.23 0.33 6.51 0.042 21.397927 WClyell_SprgfidR 0.22 0.31 6.55 0.042 2.8439 WeinerCr_DS 0.28 0.39 8.06 0.031 79.517 WeinerCr_IS 0.31 0.44 9.15 0.027 86.355 WeinerCr_US 0.31 0.43 9.02 0.027 80.792 WelshGullyT1 0.26 0.37 6.57 0.039 27.939 WelshGul_Manchac 0.21 0.3 6.96 0.041 10.505 WelshGul_NrPrair 0.26 0.36 6.57 0.039 46.49 WestForkAmite_01 0.27 0.38 6.27 0.046 1.505565 WestForkAmite_02 0.27 0.38 5.87 0.052 1.5201 WestForkAmite_04 0.26 0.37 5.91 0.05 0.75653 WFrkBeaverC2_Spr 0.23 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
WClyell_RR 0.23 0.33 6.51 0.042 21.397927 WClyell_SprgfldR 0.22 0.31 6.55 0.042 2.8439 WeinerCr_DS 0.28 0.39 8.06 0.031 79.517 WeinerCr_I12 0.31 0.44 9.15 0.027 86.355 WeinerCr_US 0.31 0.43 9.02 0.027 80.792 WelshGullyT1 0.26 0.37 6.57 0.039 27.939 WelshGul_Manchac 0.21 0.3 6.96 0.041 10.505 WelshGul_NrPrair 0.26 0.36 6.57 0.039 46.49 WestForkAmite_01 0.27 0.38 6.27 0.046 1.505565 WestForkAmite_02 0.27 0.37 5.88 0.052 0.59976 WestForkAmite_04 0.26 0.37 5.91 0.05 0.75653 WFrkBeaverC2_Spr 0.23 0.32 6.44 0.043 31.612 WindByu_Jackson 0.23						
WClyell_RR 0.23 0.33 6.51 0.042 21.397927 WClyell_SprgfldR 0.22 0.31 6.55 0.042 2.8439 WeinerCr_DS 0.28 0.39 8.06 0.031 79.517 WeinerCr_I12 0.31 0.44 9.15 0.027 86.355 WeinerCr_US 0.31 0.43 9.02 0.027 80.792 WelshGullyT1 0.26 0.37 6.57 0.039 27.939 WelshGul_Manchac 0.21 0.3 6.96 0.041 10.505 WelshGul_NrPrair 0.26 0.36 6.57 0.039 46.49 WestForkAmite_01 0.27 0.38 6.27 0.046 1.505565 WestForkAmite_02 0.27 0.37 5.88 0.052 0.59976 WestForkAmite_04 0.26 0.37 5.91 0.05 0.75653 WFrkBeaverC2_Spr 0.23 0.32 6.44 0.043 31.612 WindByu_LSC2 0.23 <td< td=""><td> vvCiyeii_Nanvves</td><td>0.21</td><td>0.3</td><td>5.96</td><td>0.05</td><td></td></td<>	vvCiyeii_Nanvves	0.21	0.3	5.96	0.05	
WClyell_SprgfldR 0.22 0.31 6.55 0.042 2.8439 WeinerCr_DS 0.28 0.39 8.06 0.031 79.517 WeinerCr_I12 0.31 0.44 9.15 0.027 86.355 WeinerCr_US 0.31 0.43 9.02 0.027 80.792 WelshGullyT1 0.26 0.37 6.57 0.039 27.939 WelshGul_Manchac 0.21 0.3 6.96 0.041 10.505 WelshGul_NrPrair 0.26 0.36 6.57 0.039 46.49 WestForkAmite_01 0.27 0.38 6.27 0.046 1.505565 WestForkAmite_02 0.27 0.37 5.88 0.052 0.59976 WestForkAmite_03 0.27 0.38 5.87 0.052 1.5201 WestForkAmite_04 0.26 0.37 5.91 0.05 0.75653 WFrkBeaverC2_Spr 0.23 0.32 6.44 0.043 31.612 WFrkBeaverC2_US 0.22	WOLLE DD	0.00	0.00	0.54	0.040	
WClyell_SprgfldR 0.22 0.31 6.55 0.042 2.8439 WeinerCr_DS 0.28 0.39 8.06 0.031 79.517 WeinerCr_I12 0.31 0.44 9.15 0.027 86.355 WeinerCr_US 0.31 0.43 9.02 0.027 80.792 WelshGullyT1 0.26 0.37 6.57 0.039 27.939 WelshGul_Manchac 0.21 0.3 6.96 0.041 10.505 WelshGul_NrPrair 0.26 0.36 6.57 0.039 46.49 WestForkAmite_01 0.27 0.38 6.27 0.046 1.505565 WestForkAmite_02 0.27 0.37 5.88 0.052 0.59976 WestForkAmite_03 0.27 0.38 5.87 0.052 1.5201 WestForkAmite_04 0.26 0.37 5.91 0.05 0.75653 WFrkBeaverC2_Spr 0.23 0.32 6.44 0.043 31.612 WindByu_Jackson 0.23	WCiyell_RR	0.23	0.33	6.51	0.042	
WeinerCr_DS 0.28 0.39 8.06 0.031 79.517 WeinerCr_I12 0.31 0.44 9.15 0.027 86.355 WeinerCr_US 0.31 0.43 9.02 0.027 80.792 WelshGullyT1 0.26 0.37 6.57 0.039 27.939 WelshGul_Manchac 0.21 0.3 6.96 0.041 10.505 WelshGul_NrPrair 0.26 0.36 6.57 0.039 46.49 WestForkAmite_01 0.27 0.38 6.27 0.046 1.505565 WestForkAmite_02 0.27 0.38 6.27 0.046 1.505565 WestForkAmite_03 0.27 0.38 5.87 0.052 0.59976 WestForkAmite_04 0.26 0.37 5.91 0.05 0.75653 WFrkBeaverC2_Spr 0.23 0.32 6.44 0.043 31.612 WFrkBeaverC2_US 0.22 0.3 5.88 0.048 30.043 WindByu_Jackson 0.23	MOkasil OssasilalD	0.00	0.04	0.55	0.040	-
WeinerCr_I12 0.31 0.44 9.15 0.027 86.355 WeinerCr_US 0.31 0.43 9.02 0.027 80.792 WelshGullyT1 0.26 0.37 6.57 0.039 27.939 WelshGul_Manchac 0.21 0.3 6.96 0.041 10.505 WelshGul_NrPrair 0.26 0.36 6.57 0.039 46.49 WestForkAmite_01 0.27 0.38 6.27 0.046 1.505565 WestForkAmite_02 0.27 0.37 5.88 0.052 0.59976 WestForkAmite_03 0.27 0.38 5.87 0.052 1.5201 WestForkAmite_04 0.26 0.37 5.91 0.05 0.75653 WFrkBeaverC2_Spr 0.23 0.32 6.44 0.043 31.612 WFrkBeaverC2_US 0.22 0.3 5.88 0.048 30.043 WindByu_Jackson 0.23 0.32 6.57 0.042 1.9565 WindByu_Milldale 0.24						
WeinerCr_US 0.31 0.43 9.02 0.027 80.792 WelshGullyT1 0.26 0.37 6.57 0.039 27.939 WelshGul_Manchac 0.21 0.3 6.96 0.041 10.505 WelshGul_NrPrair 0.26 0.36 6.57 0.039 46.49 WestForkAmite_01 0.27 0.38 6.27 0.046 1.505565 WestForkAmite_02 0.27 0.37 5.88 0.052 0.59976 WestForkAmite_03 0.27 0.38 5.87 0.052 1.5201 WestForkAmite_04 0.26 0.37 5.91 0.05 0.75653 WFrkBeaverC2_Spr 0.23 0.32 6.44 0.043 31.612 WFrkBeaverC2_US 0.22 0.3 5.88 0.048 30.043 WindByu_Jackson 0.23 0.32 6.57 0.042 1.9565 WindByu_Bildale 0.24 0.34 6.55 0.042 1.4631 WindByu_PeairsRd 0.23	_					
WelshGullyT1 0.26 0.37 6.57 0.039 27.939 WelshGul_Manchac 0.21 0.3 6.96 0.041 10.505 WelshGul_NrPrair 0.26 0.36 6.57 0.039 46.49 WestForkAmite_01 0.27 0.38 6.27 0.046 1.505565 WestForkAmite_02 0.27 0.37 5.88 0.052 0.59976 WestForkAmite_03 0.27 0.38 5.87 0.052 1.5201 WestForkAmite_04 0.26 0.37 5.91 0.05 0.75653 WFrkBeaverC2_Spr 0.23 0.32 6.44 0.043 31.612 WFrkBeaverC2_US 0.22 0.3 5.88 0.048 30.043 WindByu_Jackson 0.23 0.32 6.57 0.042 1.9565 WindByu_LSC2 0.23 0.33 6.48 0.043 1.2831 WindByu_Milldale 0.24 0.34 6.55 0.041 3.4069 WLatCypB_US_LO 0.24						
WelshGul_Manchac 0.21 0.3 6.96 0.041 10.505 WelshGul_NrPrair 0.26 0.36 6.57 0.039 46.49 WestForkAmite_01 0.27 0.38 6.27 0.046 1.505565 WestForkAmite_02 0.27 0.37 5.88 0.052 0.59976 WestForkAmite_03 0.27 0.38 5.87 0.052 1.5201 WestForkAmite_04 0.26 0.37 5.91 0.05 0.75653 WFrkBeaverC2_Spr 0.23 0.32 6.44 0.043 31.612 WFrkBeaverC2_US 0.22 0.3 5.88 0.048 30.043 WindByu_Jackson 0.23 0.32 6.57 0.042 1.9565 WindByu_LSC2 0.23 0.33 6.48 0.043 1.2831 WindByu_PeairsRd 0.23 0.32 6.52 0.041 3.4069 WLatCypB_ScotZac 0.25 0.36 7.91 0.038 33.285 WLatCypB_US_LO 0.24<						
WelshGul_NrPrair 0.26 0.36 6.57 0.039 46.49 WestForkAmite_01 0.27 0.38 6.27 0.046 1.505565 WestForkAmite_02 0.27 0.37 5.88 0.052 0.59976 WestForkAmite_03 0.27 0.38 5.87 0.052 1.5201 WestForkAmite_04 0.26 0.37 5.91 0.05 0.75653 WFrkBeaverC2_Spr 0.23 0.32 6.44 0.043 31.612 WFrkBeaverC2_US 0.22 0.3 5.88 0.048 30.043 WindByu_Jackson 0.23 0.32 6.57 0.042 1.9565 WindByu_LSC2 0.23 0.33 6.48 0.043 1.2831 WindByu_Milldale 0.24 0.34 6.55 0.042 1.4631 WindByu_PeairsRd 0.23 0.32 6.52 0.041 3.4069 WLatCypB_ScotZac 0.25 0.36 7.91 0.038 33.285 WLatCypB_US_LO 0.24						
WestForkAmite_01 0.27 0.38 6.27 0.046 1.505565 WestForkAmite_02 0.27 0.37 5.88 0.052 0.59976 WestForkAmite_03 0.27 0.38 5.87 0.052 1.5201 WestForkAmite_04 0.26 0.37 5.91 0.05 0.75653 WFrkBeaverC2_Spr 0.23 0.32 6.44 0.043 31.612 WFrkBeaverC2_US 0.22 0.3 5.88 0.048 30.043 WindByu_Jackson 0.23 0.32 6.57 0.042 1.9565 WindByu_LSC2 0.23 0.33 6.48 0.043 1.2831 WindByu_Milldale 0.24 0.34 6.55 0.042 1.4631 WindByu_PeairsRd 0.23 0.32 6.52 0.041 3.4069 WLatCypB_ScotZac 0.25 0.36 7.91 0.038 33.285 WLatCypB_US_LO 0.24 0.34 7.96 0.041 0.0666631 WoodlandCrk_01 0.						
WestForkAmite_02 0.27 0.37 5.88 0.052 0.59976 WestForkAmite_03 0.27 0.38 5.87 0.052 1.5201 WestForkAmite_04 0.26 0.37 5.91 0.05 0.75653 WFrkBeaverC2_Spr 0.23 0.32 6.44 0.043 31.612 WFrkBeaverC2_US 0.22 0.3 5.88 0.048 30.043 WindByu_Jackson 0.23 0.32 6.57 0.042 1.9565 WindByu_LSC2 0.23 0.33 6.48 0.043 1.2831 WindByu_Milldale 0.24 0.34 6.55 0.042 1.4631 WindByu_PeairsRd 0.23 0.32 6.52 0.041 3.4069 WLatCypB_ScotZac 0.25 0.36 7.91 0.038 33.285 WLatCypB_US_LO 0.24 0.34 7.96 0.041 0.0666631 C 0.04 0.04 0.041 0.0666631 WoodlandCrk_02 0.25 0.35	WelshGul_NrPrair				0.039	46.49
WestForkAmite_03 0.27 0.38 5.87 0.052 1.5201 WestForkAmite_04 0.26 0.37 5.91 0.05 0.75653 WFrkBeaverC2_Spr 0.23 0.32 6.44 0.043 31.612 WFrkBeaverC2_US 0.22 0.3 5.88 0.048 30.043 WindByu_Jackson 0.23 0.32 6.57 0.042 1.9565 WindByu_LSC2 0.23 0.33 6.48 0.043 1.2831 WindByu_Milldale 0.24 0.34 6.55 0.042 1.4631 WindByu_PeairsRd 0.23 0.32 6.52 0.041 3.4069 WLatCypB_ScotZac 0.25 0.36 7.91 0.038 33.285 WLatCypB_US_LO 0.24 0.34 7.96 0.041 0.0666631 C WoodlandCrk_01 0.25 0.35 6.5 0.041 1.8163 WoodlandCrk_02 0.25 0.35 6.32 0.044 0.5015 WoodlandCrk_03	WestForkAmite_01	0.27	0.38	6.27	0.046	1.505565
WestForkAmite_04 0.26 0.37 5.91 0.05 0.75653 WFrkBeaverC2_Spr 0.23 0.32 6.44 0.043 31.612 WFrkBeaverC2_US 0.22 0.3 5.88 0.048 30.043 WindByu_Jackson 0.23 0.32 6.57 0.042 1.9565 WindByu_LSC2 0.23 0.33 6.48 0.043 1.2831 WindByu_Milldale 0.24 0.34 6.55 0.042 1.4631 WindByu_PeairsRd 0.23 0.32 6.52 0.041 3.4069 WLatCypB_ScotZac 0.25 0.36 7.91 0.038 33.285 WLatCypB_US_LO 0.24 0.34 7.96 0.041 0.0666631 C WoodlandCrk_01 0.25 0.35 6.5 0.041 1.8163 WoodlandCrk_02 0.25 0.35 6.32 0.044 0.5015 WoodlandCrk_03 0.23 0.32 6.92 0.04 0.16068	WestForkAmite_02	0.27	0.37	5.88	0.052	0.59976
WFrkBeaverC2_Spr 0.23 0.32 6.44 0.043 31.612 WFrkBeaverC2_US 0.22 0.3 5.88 0.048 30.043 WindByu_Jackson 0.23 0.32 6.57 0.042 1.9565 WindByu_LSC2 0.23 0.33 6.48 0.043 1.2831 WindByu_Milldale 0.24 0.34 6.55 0.042 1.4631 WindByu_PeairsRd 0.23 0.32 6.52 0.041 3.4069 WLatCypB_ScotZac 0.25 0.36 7.91 0.038 33.285 WLatCypB_US_LO 0.24 0.34 7.96 0.041 0.0666631 C 0.041 0.0666631 0.041 1.8163 WoodlandCrk_01 0.25 0.35 6.32 0.044 0.5015 WoodlandCrk_03 0.23 0.32 6.92 0.04 0.16068	WestForkAmite_03	0.27	0.38	5.87	0.052	1.5201
WFrkBeaverC2_US 0.22 0.3 5.88 0.048 30.043 WindByu_Jackson 0.23 0.32 6.57 0.042 1.9565 WindByu_LSC2 0.23 0.33 6.48 0.043 1.2831 WindByu_Milldale 0.24 0.34 6.55 0.042 1.4631 WindByu_PeairsRd 0.23 0.32 6.52 0.041 3.4069 WLatCypB_ScotZac 0.25 0.36 7.91 0.038 33.285 WLatCypB_US_LO 0.24 0.34 7.96 0.041 0.0666631 C 0.041 0.0666631 0.041 1.8163 WoodlandCrk_01 0.25 0.35 6.5 0.041 1.8163 WoodlandCrk_02 0.25 0.35 6.32 0.044 0.5015 WoodlandCrk_03 0.23 0.32 6.92 0.04 0.16068	WestForkAmite_04	0.26	0.37	5.91	0.05	0.75653
WindByu_Jackson 0.23 0.32 6.57 0.042 1.9565 WindByu_LSC2 0.23 0.33 6.48 0.043 1.2831 WindByu_Milldale 0.24 0.34 6.55 0.042 1.4631 WindByu_PeairsRd 0.23 0.32 6.52 0.041 3.4069 WLatCypB_ScotZac 0.25 0.36 7.91 0.038 33.285 WLatCypB_US_LO 0.24 0.34 7.96 0.041 0.0666631 C WoodlandCrk_01 0.25 0.35 6.5 0.041 1.8163 WoodlandCrk_02 0.25 0.35 6.32 0.044 0.5015 WoodlandCrk_03 0.23 0.32 6.92 0.04 0.16068	WFrkBeaverC2_Spr	0.23	0.32	6.44	0.043	31.612
WindByu_LSC2 0.23 0.33 6.48 0.043 1.2831 WindByu_Milldale 0.24 0.34 6.55 0.042 1.4631 WindByu_PeairsRd 0.23 0.32 6.52 0.041 3.4069 WLatCypB_ScotZac 0.25 0.36 7.91 0.038 33.285 WLatCypB_US_LO 0.24 0.34 7.96 0.041 0.0666631 C 0.041 0.0666631 0.041 1.8163 WoodlandCrk_01 0.25 0.35 6.5 0.044 0.5015 WoodlandCrk_03 0.23 0.32 6.92 0.04 0.16068	WFrkBeaverC2_US	0.22	0.3	5.88	0.048	30.043
WindByu_Milldale 0.24 0.34 6.55 0.042 1.4631 WindByu_PeairsRd 0.23 0.32 6.52 0.041 3.4069 WLatCypB_ScotZac 0.25 0.36 7.91 0.038 33.285 WLatCypB_US_LO 0.24 0.34 7.96 0.041 0.0666631 C WoodlandCrk_01 0.25 0.35 6.5 0.041 1.8163 WoodlandCrk_02 0.25 0.35 6.32 0.044 0.5015 WoodlandCrk_03 0.23 0.32 6.92 0.04 0.16068	WindByu_Jackson	0.23	0.32	6.57	0.042	1.9565
WindByu_PeairsRd 0.23 0.32 6.52 0.041 3.4069 WLatCypB_ScotZac 0.25 0.36 7.91 0.038 33.285 WLatCypB_US_LO 0.24 0.34 7.96 0.041 0.0666631 C WoodlandCrk_01 0.25 0.35 6.5 0.041 1.8163 WoodlandCrk_02 0.25 0.35 6.32 0.044 0.5015 WoodlandCrk_03 0.23 0.32 6.92 0.04 0.16068	WindByu_LSC2	0.23	0.33	6.48	0.043	1.2831
WLatCypB_ScotZac 0.25 0.36 7.91 0.038 33.285 WLatCypB_US_LO 0.24 0.34 7.96 0.041 0.0666631 C WoodlandCrk_01 0.25 0.35 6.5 0.041 1.8163 WoodlandCrk_02 0.25 0.35 6.32 0.044 0.5015 WoodlandCrk_03 0.23 0.32 6.92 0.04 0.16068	WindByu_Milldale	0.24	0.34	6.55	0.042	1.4631
WLatCypB_US_LO 0.24 0.34 7.96 0.041 0.0666631 WoodlandCrk_01 0.25 0.35 6.5 0.041 1.8163 WoodlandCrk_02 0.25 0.35 6.32 0.044 0.5015 WoodlandCrk_03 0.23 0.32 6.92 0.04 0.16068	WindByu_PeairsRd	0.23	0.32	6.52	0.041	3.4069
C Street	WLatCypB_ScotZac	0.25	0.36	7.91	0.038	33.285
WoodlandCrk_01 0.25 0.35 6.5 0.041 1.8163 WoodlandCrk_02 0.25 0.35 6.32 0.044 0.5015 WoodlandCrk_03 0.23 0.32 6.92 0.04 0.16068	WLatCypB_US_LO	0.24	0.34	7.96	0.041	0.0666631
WoodlandCrk_02 0.25 0.35 6.32 0.044 0.5015 WoodlandCrk_03 0.23 0.32 6.92 0.04 0.16068	С					
WoodlandCrk_03 0.23 0.32 6.92 0.04 0.16068	WoodlandCrk_01	0.25	0.35	6.5	0.041	1.8163
WoodlandCrk_03 0.23 0.32 6.92 0.04 0.16068	WoodlandCrk_02	0.25	0.35	6.32	0.044	0.5015
_		0.23	0.32	6.92	0.04	0.16068
		0.23	0.32	6.99	0.039	1.1323

Appendix H: Hydrologic and Hydraulic Models Amite River and Tributaries Study East of the Mississippi River, Louisiana Feasibility Study with Integrated Environmental Impact Statement

WoodlandCrk_05	0.25	0.35	6.57	0.042	0.58812
WoodlandCrk_06	0.24	0.34	6.6	0.042	0.059746
WoodlandCrk_07	0.22	0.3	6.69	0.041	0.0007323 47

9.7 Annex H-7: Appendix G: Hydrologic and Hydraulic Models – Description of Past Alternatives

Darlington Dam

Darlington Dam is a proposed dam on the Amite River near Darlington, Louisiana. It aims to provide FRM benefits by attenuating floodwater in its impoundment and releasing it over time at a lower rate, thus protecting downstream areas from the peak flows of the upper Amite River.

This alternative was seen as potentially effective for providing significant FRM benefits and therefore selected for modeling. The Darlington Dam was modeled as a Dry Dam, meaning that it began with no water in the impoundment, allowing for maximum storage capacity in evaluating potential effectiveness.

The dam is designed to retain the 25-year flood event and smaller events within the flood control pool. For these events, water does not reach the elevation of the emergency spillway, and only the low-level outlet works are used for outflow. For events larger than the 25-year event, the emergency spillway is activated, and the surcharge pool is utilized.

The model for Darlington Dam, obtained from LaDOTD, utilized a 100-year dam design. For this modeling effort, HH&C was tasked with modeling the 25-year dry dam adjusting the dam crest and emergency spillway elevation accordingly. When the water surface elevation in the impoundment is below the elevation of the emergency spillway, water flows through the dam via the low-level outlet, which is three 10-ft by 10-ft culverts at the base of the dam. When the water surface is higher than the emergency spillway, the low-level outlet is closed.

To properly represent the operation of the dam outlets in the model, stage-flow rating curves were extracted from model results of both the low-level outlet and the emergency spillway. The low-level outlet was represented as three 10-ft by 10-ft box culverts, and the spillway was represented as a 1000-ft wide weir at elevation 172.8 ft NAVD 88. The stage-flow rating curves that resulted from both of those structures were combined into one rating that that is controlled by the culvert rating curve below elevation 172.8 ft NAVD 88 and controlled by the weir at elevations above 172.8 ft NAVD 88. Those curves were combined into a single stage-flow rating curve that was applied to the 2D area connection of the Darlington Dam.

Lily Bayou, Bluff Creek, and Darlington Creek Dry Detention Ponds (Alternative 8A)

The Lily Bayou, Bluff Creek, and Darlington Creek dry detention ponds are dams on three tributaries of the upper Amite River. These dams would provide FRM benefits by attenuating floodwater in their impoundments and releasing water for an extended time at lower rates, thus saving the Amite River Basin from the peak flows of the three streams.

This alternative was considered effective for significant FRM benefits and was selected for modeling. It assumed that all upstream flow would be stored in the ponds for every flood event, maximizing potential benefits. However, detailed analysis for outlet works sizing was not performed due to the assumption of complete storage.

Sandy Creek Dry Detention Pond (Alternative 8C)

Sandy Creek Dry Detention Pond is a dam on Sandy Creek, a right bank tributary of the Amite River. The dam would provide FRM benefits by attenuating floodwater in its impoundment and releasing water for an extended time at a lower rate, thus saving the lower Sandy Creek Basin and the lower Amite River Basin from the peak flows of upper Sandy Creek.

Similar to the other dry detention ponds, this alternative assumed complete storage of upstream flow for modeling purposes, maximizing potential benefits. No detailed analysis of outlet works was performed.

Spanish Lake Pump Station and Gate Operation

The Spanish Lake area and surrounding bayous (Bayou Fountain and Bayou Manchac) historically flood due to backwater from the Amite River. Initially, a pump station diverting floodwaters to the Mississippi River was considered but was determined to be ineffective. That alternative was modeled with the 100-year event, and it was determined that the influence area of a pump station in that location could not have significant FRM benefits to the Spanish Lake area. Another potential location near the confluence of Bayou Fountain and Bayou Manchac was evaluated but screened out due to cost.

This alternative was not considered economically feasible for FRM and was not modeled for all ACE events.

Highway 22

Highway 22 crosses the Amite River Diversion approximately 3 miles downstream from the Amite River. When there is significant flow out of the banks of the Amite River Diversion, Highway 22 acts as a barrier to flow. This causes backup of water upstream of Highway 22. Adding drainage or turning Highway 22 into a short causeway was considered to mitigate the flow blockage. Both options were modeled with the 100-year event. While water levels upstream were reduced, the project did not benefit enough structures to justify further modeling.

Port Vincent Bridge

The Port Vincent Bridge on Highway 42 crosses the Amite River and was thought to restrict flow, potentially increasing upstream water levels. A clear span bridge replacement was considered but was found to provide minimal FRM benefits and was not modeled for the full range of ACE events.

Amite River Re-meandering

Restoring meanders to the Amite River was suggested to increase river length and storage capacity, potentially slowing floodwaters. While this alternative could provide benefits, particularly during high-frequency events, it poses design and feasibility challenges. This alternative was not modeled due to the timing of its suggestion and the completion of hydraulic modeling. However, it may be worth modeling in the future.

Highway 16

The Highway 16 Bridge crosses Colyell Creek, a tributary of the Amite River. It was assumed that the bridge might restrict flow, increasing upstream water levels. However, preliminary analysis showed the bridge deck would not be impacted in most flood events, and the potential benefits were limited. This alternative was not modeled due to the low density of upstream structures, lack of survey data, and minimal expected hydraulic impact.

Results

Hydraulic model runs were conducted for the full suite of eight 24-hour average recurrence interval events (2-year, 5-year, 10-year, 25-year, 50-year, 100-year, 200-year, and 500-year) for both the baseline without project (2026) and the Future Without Project (FWOP) scenario (2076). Additionally, model runs were performed for the same eight 24-hour ACE events for three alternatives: Darlington Dam, Alternative 8A, and Alternative 8C. All alternative model runs used the baseline (2026) hydrology.

The results of hydraulic modeling were used to generate water surface elevation and depth grids for each alternative across the full suite of eight 24-hour ACE events. These results grids were then provided to the GIS and Economics branches to support the development of economics analyses.

Water surface elevations at three key locations along the Amite River- Baywood, Denham Springs, and Port Vincent- are presented in Tables 2 through 4. These tables show the water surface elevations for each alternative across the different frequency events.

	Table 2							
St	ages in tl	he Amite	River at I	Baywood	, Louisia	na (ft NA	VD88)	
	2 Year	5 Year	10	25	50	100	200	500
	Z i eai	5 Teal	Year	Year	Year	Year	Year	Year
FWOP	85.2	87.8	89.5	91.3	92.4	93.5	94.5	96.5
Baseline	85.2	87.8	89.5	91.3	92.4	93.5	94.5	96.5
Alternative 8A	85.0	87.6	89.3	91.2	92.4	93.4	94.4	96.3
Alternative 8C	85.2	87.8	89.5	91.3	92.4	93.5	94.5	96.5
Darlington Dam	79.4	80.5	81.4	82.4	83.1	83.7	83.9	84.5

Table 3 Stages in the Amite River at Denham Springs, Louisiana (ft NAVD 88)									
	10 25 50 100 200 500								
	2 Year	5 Year							
FWOP	30.0	32.4	34.1	36.6	38.5	40.1	41.7	43.3	
Baseline	30.0	32.4	34.1	36.6	38.5	40.1	41.7	43.3	
Alternative									
8A	29.8	32.2	33.8	36.4	38.2	39.9	41.6	43.1	
Alternative									
8C	29.6	32.0	33.6	36.1	38.0	39.6	41.4	43.0	
Darlington									
Dam	26.1	27.7	29.1	31.1	32.6	33.9	35.2	37.5	

	Table 4							
Stag	ges in the	Amite R	iver at Po	ort Vincer	nt, Louisi	ana (ft NA	AVD 88)	
	2 Year	5 Year	10	25	50	100	200	500
	Z i eai	o real	Year	Year	Year	Year	Year	Year
FWOP	7.8	9.0	10.1	11.5	12.6	13.5	14.5	16.1
Baseline	7.6	8.9	9.9	11.4	12.5	13.5	14.5	16.0
Alternative								
8A	7.5	8.7	9.8	11.2	12.4	13.3	14.3	15.9
Alternative								
8C	7.4	8.7	9.7	11.1	12.3	13.2	14.2	15.8
Darlington								
Dam	5.8	6.9	7.7	8.7	9.7	10.6	11.6	13.1

9.8 Annex H-8: Dewberry H&H Modeling Report

Amite River Basin Numerical Model

March 25, 2019

Project Report

PREPARED BY:

Dewberry Engineers Inc. 1615 Poydras Street, Suite 650 New Orleans, LA 70112 Louisiana Department of Transportation & Development (LA DOTD)

1201 Capital Access Road Baton Rouge, LA 70802

Page intentionally left blank.

•

TABLE OF CONTENTS

Introduction	14
Numerical Model Purpose and Selection	17
HEC Software Used to Develop the ARBNM	
Tiered Modeling Approach	20
The 6-tiers:	
Application of Modeling Approaches	21
Data Gap Analysis and Collection	23
LiDAR, Bathymetry, and Ground Survey Collection	26
2018 LA DOTD ARB LiDAR	26
2017/18 LA DOTD ARB Survey and Bathymetry Collection	28
Survey Methodologies	28
Cross Section Survey	28
Detailed Bridge Surveys	
Limited Detail Survey	30
High Water Mark (HWM) and Observed Data Collection	31
August 2016 Flood HWM Data	32
Review of ARBC HWM Data	32
Other Sources of HWMs for the August 2016 Flood	
March 2016 Flood HWM Data	
October 2017 Flood HWM Data	
August 2017 Flood HWM Data	36
Hydrologic Model	37
Model Geometry, Input, and Parameters	38
Subbasins	38
Routing	40
Meteorological Models	41
Hydraulic Model	42
Dynamic HEC-RAS Hydraulic Model	42
Computation Methods	43
Model Geometry	43
Model Parameters	
HEC-RAS Model Stability	
1D Flow Stability	
2D Flow Stability	
Steady State ARB HEC-RAS Hydraulic Models	
Model Geometry	
Hydrologic Flows	
Calibration	
Historic Precipitation Reconstruction for Floods	
August 2017 Precipitation Event	
August 2017 Frecipitation Event	

March 2016 Precipitation Event	
August 2016 Precipitation Event	
HEC-HMS Calibration	
Validation of Excess Precipitation Observations	92
HEC-RAS Calibration	96
Use of HEC-RAS Flow Roughness Factors in the ARB HEC-RAS Model 1D Reaches	96
Low Flow Calibration for January 2018 and June 2018 Flow Events	97
Calibration of the August 2017, October 2017, March 2016 and August 2016 Flood Events	97
Design Flood Simulations	100
Flood Frequency Analysis	100
Methodology and Software	
Estimated Frequency of the August 2016 Flood	105
Summary of Flood Frequency Estimates	
Development of Design Storm Spatial and Temporal Distributions and Magnitude	108
Design Storm Spatial Distribution	109
Design Storm Temporal Distribution	111
Design Storm Centers and Magnitudes	
Boundary Conditions	122
Average or "Typical" Conditions	123
Wind and Storm Surge Influenced Conditions	
"Typical" Flood Conditions	
Period of Record Peak Flood Conditions	
Stationarity Analysis of Historic Precipitation and Flow	
Summary of Stationarity Assessment	135
Consequence Model	136
Base Input Data	136
Building Footprint Development	138
Agricultural Grid	139
Inundation Grids	139
Model Parameters	140
Economic Losses	140
Agricultural Data	142
Life-Loss	
Impact Area Parameters and Warning Issuance Scenario	
Alternatives	
Results and Validation	151
Economic Damages	151
Number of Structures	
Life-Loss	153
HEC-WAT Implementation and Demonstration Projects	154
Summary and Recommendations	157
References	160
Appendix 1: HEC-HMS Model Parameter Summary	A1-1
Appendix 2: HTab Curves for Bridges in the Dynamic ARB HEC-RAS Model	A2-1
Appendix 3: HEC-SSP Statistical Analysis Reports	A3-1

.

Appendix 4: Boundary Conditions Supporting Research	A4- 1
Appendix 5: Hydrologic and Hydrometeorologic Stationarity Assessment	A5- 1

LIST OF FIGURES

Figure 1: Amite River Basin	15
Figure 2: Generalized Geologic Regions of Louisiana.	16
Figure 3: Modeling approaches applied throughout the ARB	22
Figure 4: 2018 LA DOTD LiDAR	26
Figure 5: 2004 LSU LiDAR	26
Figure 6: Example bridge scan point cloud	30
Figure 7: Example bridge scan point cloud illustrating the bridge skew and pier locations	30
Figure 8: Example mudline on exterior of building.	31
Figure 9: Example mudline within a residential building.	31
Figure 10: Example debris line on fence	32
Figure 11: Example mudline on vegetation	32
Figure 12: Triple validation of HWMs	33
Figure 13: HWM location examples	34
Figure 14: Example visualization of observed and modeled data using the HEC-RAS Plot Stage and Flow Hydrographs function.	35
Figure 15: ARB HEC-HMS Hydrologic Model Overview	37
Figure 16: HEC-HMS basin Grid Cell File	39
Figure 17: ARBNM HEC-RAS Hydraulic Model Geometry Overview	42
Figure 18: Example of 2D Mesh with varying cell resolution and breaklines used to enforce streamlines and ridgelines within the upper reaches of the Bayou Manchac 2D Flow Area	46
Figure 19: Example of a bridge approximated as multiple culverts within SA/2D connections	47
Figure 20: Example of a bridge approximated using LiDAR data to simulate the opening for the Weir/Embankn within SA/2D Connections.	
Figure 21: Example of bridge coding from ground survey at Highway 22 at the Amite River Diversion Canal	48
Figure 22: Example of multiple opening bridge at highway 37/63 on the Amite River	49
Figure 23: Amite Diversion Weir geometry, Amite River Lateral Structure146750.0 (right bank of Amite River).	52
Figure 24: Variations of Weir Coefficients in the ARB HEC-RAS Hydraulic Model at the Amite River Diversion W Compared to Observed Flow Split on June 15, 2018 (flow split data collected by USGS)	
Figure 25: Amite River, Cross Section 399176.7 (approximately 20 miles upstream of the Comite River Conflue looking upstream. The basic channel Manning's N value is estimated to be 0.037	-

Figure 26: Amite River, Cross section 399176.7 (approximately 20 miles upstream of the Comite River Confluence) looking at right over bank. The basic right overbank Mannings's N value is estimated to be 0.12. Photo: Forte & Tablada, 2018
Figure 27: Chinquapin Canal, Cross Section 16041.2 looking upstream. The channel Manning's N value is estimated to be 0.03.
Figure 28: Chinquapin Canal, Cross Section 16041.2 looking at left overbank. The left overbank Manning's N value is estimated to be 0.11.
Figure 29: Creating identical inverts and sections at sections 2, BRD, BRU and 3 of the HEC-RAS bridge routine generally resulted in greater stability for both single and multiple bridge openings
Figure 30: Gradual transition of cell sizes resulted in improved stability
Figure 31: Example of 2D cell with two independent flooding elevations on the east and west edges of the cell which result in instabilities. The use of the red break lines along ridgelines divides these independent flood elevations coming from the east and west and consequently would improve model stability and run times6.
Figure 32: Refinement of 2D mesh around ponds and borrow pits similar in size to the 2D mesh resolution resulted in improved stability. (Grey lines represent original mesh, black lines represent refined mesh)6
Figure 33: Example of non-optimal cell alignment between 2D Flow Areas where faces are not collinear6
Figure 34: Example of more optimally aligned cell faces between adjacent 2D Flow Areas6
Figure 35: Optimization of Cell Sizes Adjacent to Culverts6
Figure 36: Steady State Amite River Tributaries HEC-RAS Hydraulic Model Geometry Overview
Figure 37: Steady State Comite River Tributaries HEC-RAS Hydraulic Model Geometry Overview6
Figure 38: Reconstructed rainfall with observations overlaid for the August 2017 event. Areas circled in red (blue) are underestimated (overestimated) by reconstructed Stage IV data
Figure 39: Scatter plot of the reconstructed Stage IV rainfall and observed data with a 10% and 20% error bound.7
Figure 40: Reconstructed rainfall with observations overlaid for the October 2017 event. Areas circled in red (blue are underestimated (overestimated) by reconstructed Stage IV data.
Figure 41: Scatter plot of the reconstructed Stage IV rainfall and observed data with a 10% and 20% error bound.8
Figure 42: Reconstructed rainfall with observations overlaid for the March 2016 event. Areas circled in red (blue) are underestimated (overestimated) by reconstructed Stage IV data
Figure 43: Scatter plot of the reconstructed Stage IV rainfall and observed data with a 10% and 20% error bound.8
Figure 44: Reconstructed rainfall with observations overlaid for the August 2016 event. Areas circled in red (blue) are underestimated (overestimated) by reconstructed Stage IV data.
Figure 45: Scatter plot of the reconstructed Stage IV rainfall and observed data with a 10% and 20% error bound.8
Figure 46: Estimation of initial water content for the August 2016 flood event for the basin upstream of USGS Gage 07377500, Comite River near Olive Branch. At approximately 12:00 AM on August 12th, 2016, the river began to respond after receiving 2.3 in. of cumulative precipitation8
Figure 47: Validation of Gages for October 2017 Event9

9	e 48: Adjusted reconstructed rainfall with observations and mask overlaid for the August 2016 event. Thre sets of masks were created for the event as observations of rainfall and streamflow (Comite at Olive Branc and Darlington) indicated underestimations in the reconstructed rainfall	h
Figure	49: HEC-RAS Flow Roughness Factors Option	.96
١	• 50: HWMs were added to RAS Mapper and labeled to enable a rapid assessment of the accuracy of the HRAS model by simply activating the Water Surface Elevation Grid (WSE) and hovering the cursor over the observed HWM.	
1	e 51: The HEC-RAS Plot Stage and Flow Hydrographs function can be misleading when comparing observed and modeled hydrographs in areas of coupled 1D and 2D modeling since it does not account for 2D overba flows as demonstrated here for the Amite River Near Denham Springs where flows are under estimated by only reporting flows contained within the 1D portion of the floodplain	,
- (2 52: By utilizing the Plot Flow Time Series function for Profile Lines drawn across both the 1D and 2D region of a model will provide a comprehensive insight into the observed hydrograph where both 1D and 2D modeling methods are used as demonstrated here for the Amite River Near Denham Springs, more accurately representing the floodplain than the method demonstrated in Figure 51	
Figure	e 53: USGS streamflow gages used in the Flood Frequency Analysis	L01
_	2 54: Bulletin 17C AEP flow estimates including the August 2016 flood for the Amite River with the 90% confidence limits illustrated.	L07
_	255: Bulletin 17C AEP flow estimates including the August 2016 flood for the Comite River with the 90% confidence limits illustrated.	108
	2 56: The design storm at each storm center is represented by elliptical isohyets with a ratio of the major as to the minor axis of 2.5 to 1 using the HMR 52 Standard Isohyetal Pattern	
- 6	257: The axis ratios for the August 2016 and March 2016 events were approximated to validate the HMR 5 assumption of 2.5:1. Both the March and August 2016 events demonstrated approximately a 2:1 ratio as Illustrated here for the August 2016 event	
Figure	• 58: HMR 52 Temporal Distribution	111
_	e 59: The HMR 52 temporal distribution accumulation was compared to the August 2016 storm accumulations to validate the assumption	112
Figure	e 60: Design storm centered over the Comite River near Olive Branch Gage (OB).	113
Figure	e 61: Design storm centered over the Amite River near Darlington Gage (DAR)	114
Figure	e 62: Design storm centered over the Amite River near Denham Springs Gage (DS)	115
Figure	e 63: Design Storm Flows for the Comite River near Olive Branch with Multiple Storm Centers	119
Figure	e 64: Design Storm Flows for the Comite River near Comite with Multiple Storm Centers	L19
Figure	e 65: Design Storm Flows on the Amite River at Darlington with Multiple Storm Centers	L20
Figure	e 66: Design Storm Flows on the Amite River at Magnolia with Multiple Storm Centers	L20
Figure	e 67: Design Storm Flows on the Amite River at Denham Springs with Multiple Storm Centers	L21
Figure	e 68: Design Storm Flows on the Amite River at Port Vincent with Multiple Storm Centers	L21

8 |

Figure 69: ARB HEC-FIA Consequence Model Overview	136
Figure 70: Example of the NSI (yellow triangles) in East Baton Rouge Parish	137
Figure 71: Comparison of LiDAR derived structures (red squares) and the NSI (yellow triangles) in Eapparish.	•
Figure 72: HEC-FIA grids only event set-up.	139
Figure 73: Depth-damage curve associated with structure occupancy type REL 1, Church	141
Figure 74: Depth-damage curve associated with structure occupancy type RES1-1SNB, Residential on basement.	•
Figure 75: Crop loss editor table in HEC-FIA	143
Figure 76: Safe zone parameters for structure occupancy type RES1-1SNB, Residential one story wit	
Figure 77: Safe zone parameters for structure occupancy type RES1-2SNB, Residential two story wit	
Figure 78: Impact area editor showing the default values chosen for the ARB.	146
Figure 79: "Additional Parameters" editor for computing life-loss with uncertainty	147
Figure 80: Warning issuance scenario for the August 2016 flooding event	148
Figure 81: Timeline of watches and warnings issued by the NWS for Louisiana	149
Figure 82: Alternative editing GUI	150
Figure 83: ARB HEC-WAT Model	154
Figure 84: HEC-WAT Model Linking Editor	155
Figure 85: Software Linking in HEC-WAT	155
Figure 86: Create a new HEC-WAT Alternative Simulation.	156

LIST OF TABLES

Table 1: River Characteristics	17
Table 2: Datasets Used to Develop the ARBNM	23
Table 3: ASPRS V1.4 Lidar Point Classes Required For The 2018 LA DOTD Lidar	27
Table 4: Summary of HWM Quality Assessment and Count	33
Table 5: Summary of Terrain Data Used for 2D Flow Areas	45
Table 6: Summary of Geometric Data Used for High Detail Cross Sections	50
Table 7: Summary of Manning's N Values for 1D Cross Sections	54
Table 8: Summary of Manning's N Values for 2D Flow Areas	57
Table 9: NWS Flood Stage Categorization	72
Table 10: USGS Recorded Stage (Cell colors correspond to Table 9 Flood Stage Categorization)	73
Table 11: USGS Recorded Flows (Cell colors correspond to Table 9 Flood Stage Categorization)	73
Table 12: Selected Historical Flood Events	74
Table 13: Amite Watershed Calibration Events	76
Table 14: August 2017 Precipitation Event Observations	88
Table 15: October 2017 Precipitation Event Observations	89
Table 16: March 2016 Precipitation Event Observations	90
Table 17: August 2016 Precipitation Event Observations	91
Table 18: Summary of Excess Precipitation	92
Table 19: Summary of Stream Gages used within the Analysis	102
Table 20: Comparison of Software and Statistical Methodologies for the 1% AEP Estimates (through 2017)	103
Table 21: Low Outliers Detected by Software and Method Including and Excluding the August 2016 Flood	104
Table 22: Sensitivity of the inclusion and exclusion of the August 2016 flood on the 1% AEP flow estimates	104
Table 23: Estimated Frequency Range of the August 2016 Flood	105
Table 24: Peak Flow Estimates for Gages with 2016 event included in analysis except as noted	106
Table 25: Peak Design Flood Streamflow Estimates for Olive Branch (OB) Storm Center with Estimated AEP of Range	
Table 26: Peak Design Flood Streamflow Estimates for Darlington (DAR) Storm Center with Estimated AEP or Range	
Table 27: Peak Design Flood Streamflow Estimates for Denham Springs (DS) Storm Center with Estimated AE AEP Range	
Table 28: Average or "typical" conditions downstream boundary condition water surface elevation hydrogra	ph.123

•

Table 29: Average Daily Wind Speed vs. Measured Lake Maurepas water surface elevation	125
Table 30: Amite River Peak Discharges vs. Measured Lake Maurepas water surface elevation	126
Table 31: Period of record flood conditions downstream boundary condition water surface elevation hydrogra	•
Table 32: HEC-FIA Structure Inventory inputs for HEC-FIA	137
Table 33: Occupancy Type and Count Estimated for the ARB	140
Table 34: Summary of HEC-FIA Computed Economic Damages Estimated for the August 2016 Flood	151
Table 35: Summary of HEC-FIA Computed Damaged Structures Counts Estimated for the August 2016 Flood	152
Table 36: Summary of observed and HEC-FIA simulated life loss for the August 2016 Flood for the ARB	153

LIST OF ACRONYMS

Freedom of Information Act

Annual Exceedance Probability

Amite River Basin

ARB

Amite River Basin Drainage & Water Conservation District

ARBC

Amite River Basin Numerical Model

ARBNM

Annual Maximum Series

AMS

Base Level Engineering

BLE

Bridge Downstream Internal Cross Section

Bridge Selection Method BR Sel Method

Bridge Upstream Internal Cross Section BRU

Centimeter cm.

Cubic Feet Per Second cfs

Coastal Protection and Restoration Authority CPRA

Coastwide Reference Monitoring System CRMS

Community Collaborative Rain, Hail, & Snow Network CoCoRaHS

Community Collaborative Rain, Hail, & Snow Network CTP Cooperating Technical Partner DEM Digital Elevation Model **Engineering and Construction Bulletin ECB** Federal Emergency Management Agency **FEMA** Flood Insurance Rate Map **FIRM** Flood Insurance Study FIS Flood Risk Analysis FRA foot/feet ft.

Hydrologic Engineering Center HEC HEC-Data Storage System Visual Utility Engine **HEC-DSSVue HEC-Ecosystem Function Model HEC-EFM** HEC-FIA **HEC-Flood Impact Analysis HEC-Hydrologic Modeling System HEC-HMS HEC-Meteorological Visual Utility Engine** HEC-MetVue **HEC-River Analysis System HEC-RAS HEC-Statistical Software Package HEC-SSP**

HEC-Watershed Analysis Tool HEC-WAT
High Water Mark HWM

.

FOIA

Hour hr

HMR Hydrometeorological Report

Inch in.

Inertial Navigation System INS

Integrated Climate and Land-Use Scenarios **ICLUS**

Louisiana Department of Transportation & Development LA DOTD

Louisiana Economic Development LED

Louisiana State University LSU

Louisiana Watershed Initiative LWI

Mile mi.

Multi-Resolution Land Cover Characteristics Consortium MRLC

National Hydrology Dataset Plus NHD+

National Land Cover Database **NLCD**

National Oceanic and Atmospheric Administration NOAA

National Structure Inventory NSI

National Weather Service NWS

Non-vegetated Vertical Accuracy NVA

North American Datum of 1983 **NAD 83**

North American Vertical Datum of 1988 NAVD 88

NRCS Natural Resources Conservation Service

One Dimensional 1D

Quality Level 1 QL1

QL2 Quality Level 2

RTN Real-time Network

Root Mean Square Error in the Z direction **RMSEz**

Seconds sec

SSURGO Soil Survey Database

square miles sq. mi.

Standard Hydrologic Grid SHG

The Annual Exceedance Probability **AEP**

Two Dimensional 2D

U.S. Army Corps of Engineers **USACE**

USGS United States Geological Survey

Water Surface Elevation WSEL / WSE

World Meteorology Organization WMO

INTRODUCTION

Dewberry Engineers Inc. (Dewberry) was contracted by the Louisiana Department of Transportation and Development (LA DOTD) for this project to develop the suite of modeling tools referred to as the Amite River Basin Numerical Model (ARBNM), to simulate hydrology and hydraulics within the Amite River Basin (ARB), and to quantify the potential consequences of floods simulated with the tools. Forte & Tablada, Inc. and FTN Associates, Ltd supported Dewberry on this project. Forte & Tablada, Inc. provided survey services, and FTN Associates, Ltd provided independent quality control, stakeholder engagement and hydraulic modeling support.

This report documents the process used to develop Version 1.0, of the ARBNM, the sources of data utilized for the model and the technical methodologies applied as a resource to future users. In addition to this report, the *Amite River Basin Numerical Model Quick Guide* provides hands-on guidance using the ARBNM tools with references back to this document and other technical references pertinent to the successful utilization of the ARBNM.

.

The Amite River is a tributary to Lake Maurepas in southeastern Louisiana. The river's headwaters begin in Mississippi as the East Fork Amite River and the West Fork Amite River, and flow south, confluencing approximately 1 mi. downstream of the Louisiana-Mississippi state line. The Amite River continues and confluences with the Comite River just upstream of the City of Denham Springs and continues on for approximately 55 mi. before reaching Lake Maurepas. Figure 1 below illustrates the Amite River Basin (ARB) and its major tributaries.

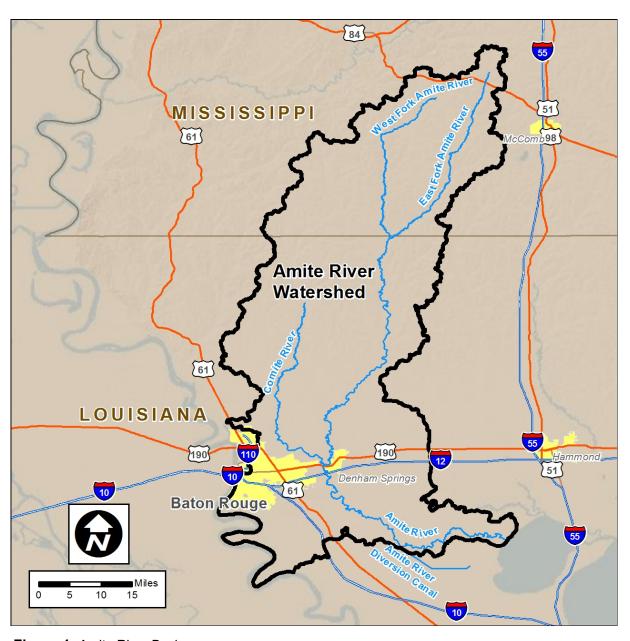


Figure 1: Amite River Basin.

The Amite River and its tributaries pass over three generalized geologic regions. These regions, illustrated in **Figure 2**, include the Citronelle and Willis Formations (Pliocene) region, the Terraces (Pleistocene) region, and the Alluvium (Holocene) region. Characteristics of the Amite River and major tributaries found within these regions are described in **Table 1**.

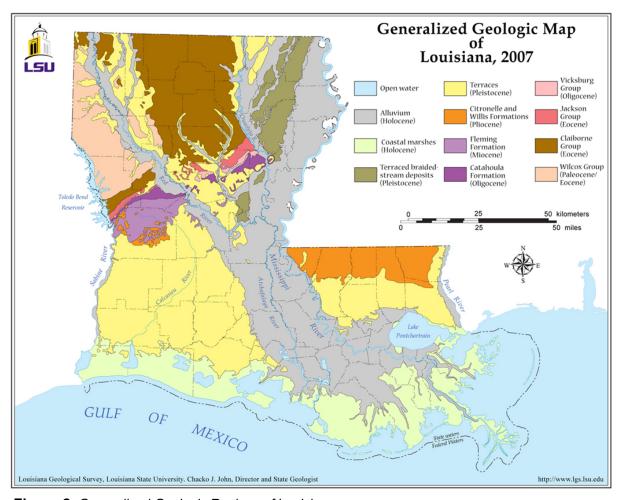


Figure 2: Generalized Geologic Regions of Louisiana.

Source: Louisiana Geological Survey and Louisiana State University

Table 1: River Characteristics			
Generalized Geologic Region	River Characteristics		
Citronelle and Willis Formations (Pliocene)	 Extensive coarse sand/gravel bars with partially filled channels during base flows. Confined floodplains, Approximately 3.5 ft./mi. water surface slope 		
Terraces (Pleistocene)	 Extensive sand/gravel bars with partially filled channels during base flows. Highly meandering channels, extensive evidence of channel migration and changing morphology. Less confined floodplains. Approximately 2.2 ft./mi. water surface slope 		
Alluvium (Holocene)	 Deep, slow moving tidally influenced flows. Base flows permanently at or near bank full. Poorly drained soils. Wide, unconfined floodplains Approximately 0.5 ft./mi. water surface slope 		

Numerical Model Purpose and Selection

The modeling tools provide engineers and planners with a system-wide model representing the ARB's existing hydrologic and hydraulic conditions. The model can be used as a baseline to support the assessment of manmade and natural watershed changes that may alter flood risk. Using these tools users can quantify changes to flood volumes, flood elevations, and frequencies as a result of physical changes, while simultaneously assessing and quantifying life-safety and economic consequences.

Proprietary and freely available software was reviewed to determine their suitability for development of the ARBNM. The U.S. Army Corps of Engineers (USACE) Hydrologic Engineering Center (HEC) produces the HEC suite of software which has become widely used for hydrologic and hydraulic modeling throughout the U.S. The software is freely available to non-USACE users, and is the most commonly used suite of software for the Federal Emergency Management Agency (FEMA) Flood Insurance Studies.

The HEC suite is a consistent framework for hydrologic and hydraulic modeling through its HEC-Hydrologic Modeling System (HEC-HMS) and HEC-River Analysis System (HEC-RAS) applications. HEC-RAS's recent enhancements include industry leading two dimensional (2D) modeling capabilities, ideally suited to complex unconfined floodplains found throughout Louisiana. HEC-RAS's 2D capabilities are becoming more widely embraced both in Louisiana and within the national community of practice.

While some future projects will require the modification of HEC-HMS hydrologic models, the majority will likely only require the modification of HEC-RAS hydraulic models to assess potential project impacts, including new roads, levees, channel modifications, and diversions. While there are many local engineering firms in Louisiana who are experienced users of the one dimensional (1D) hydraulic modeling capabilities of HEC-RAS, as a result of the relatively new 2D technology, there are far fewer that are familiar with 2D hydraulic modeling. Therefore, model features, such as channels and hydraulic structures that will most frequently

be subject to further study and investigation, have been modeled using 1D features, thus making the models generally more accessible to a wider range of end users and maximizing the use of embedded design and analysis functions within HEC-RAS which are generally more extensive for 1D features.

In addition to the hydrologic and hydraulic capabilities of the HEC suite, additional HEC applications ideally suited to Louisiana include HEC-Flood Impact Analysis (HEC-FIA) which quantifies the life safety and economic impacts of floods and projects, HEC-Ecosystem Function Model (HEC-EFM) which assesses the ecosystem impacts of projects, and the HEC-Watershed Analysis Tool (HEC-WAT) which integrates multiple models into a single environment and provides users with an advanced suite of tools to assess projects through both traditional and advanced risk assessment methodologies, all of which are available to non-USACE users at no cost.

HEC Software Used to Develop the ARBNM

Software used for the ARBNM was classified into two broad categories: Primary Software and Secondary Software. Definitions of each category for purposes of this report are as follows:

1. Primary Software: Includes software that will be frequently used by the local community of practice to assess risk and the potential impact of projects within the ARB.

HEC-Hydrologic Modeling System (HEC-HMS)

• HEC-HMS allows users to simulate the complete hydrologic processes of dendritic watershed systems, and includes many traditional hydrologic analysis procedures such as event infiltration, unit hydrographs, and hydrologic routing. HEC-HMS was used to develop a hydrologic model of the ARB that allows easy integration of computed flows to a HEC-RAS hydraulic model. While this software will not require updating for every use of the ARBNM by the local community of practice, it is anticipated that many users will choose to refine the model and create additional hydrologic simulations.

HEC-River Analysis System (HEC-RAS)

HEC-RAS allows users to perform 1D steady flow, 1D and 2D unsteady flow
calculations, sediment transport/mobile bed computations, and water
temperature/water quality modeling. HEC-RAS was used to develop a hydraulic
model of the ARB using the unsteady coupled 1D and 2D engines. It is anticipated
that this software will be the most commonly used software by the local community
of practice.

HEC-Flood Impact Assessment (HEC-FIA)

HEC-FIA allows users to perform consequence assessments from a single event
including economics and life safety. HEC-FIA was used to develop a consequences
model for the ARB to quantify economic and life safety impacts of simulations.
While this software will likely not be used for most local scale applications of the
ARBNM, it is anticipated that the local community of practice will most commonly
utilize it to assess the consequences of larger, regional scale flood mitigation and
planning projects.

•

2. Secondary Software: Includes software used to help develop the ARBNM, software that will only require occasional use, and software needed only for advanced applications.

HEC-Statistical Software Package (HEC-SSP)

HEC-SSP allows users to perform statistical analyses of hydrologic data. HEC-SSP can perform flood flow frequency analysis based on Bulletin 17B (Interagency Advisory Committee on Water Data, 1982) and Bulletin 17C (England, et al., 2015) methodologies, generalized frequency analysis on flow and other hydrologic data, volume frequency analysis on high and low flows, duration analysis, coincident frequency analysis, and balanced hydrograph analysis. HEC-SSP was not an integral part of the ARBNM, but was used extensively to analyze historical data to support calibration of simulations for specific annual exceedance probabilities within the ARB. It is anticipated that HEC-SSP will not be widely implemented by the local community of practice since its primary purpose was to advise the development of probabilistic design floods during the initial development of the ARBNM. However, as additional years of historic data are collected, it may again be utilized to perform updated analysis of streamflow statistics to advise the updated calibration for the ARBNM.

HEC-Meteorological Visual Utility Engine (HEC-MetVue)

HEC-MetVue is a tool that provides users with a suite of functions for precipitation viewing and processing. HEC-MetVue was utilized for the development of design storms within the ARBNM and enabled several storm centers to be efficiently simulated. HEC-MetVue is anticipated to be used by advanced users for the analysis of various storms including those to meet specific community design criteria. One potential application is the ability to move the center of observed and design storms within the ARB to adjacent watersheds if needed to simulate 'what if' scenarios. Examples could include 'what if the August 2016 flood was centered over the headwaters of the ARB, or 30 mi. further east.

HEC-Watershed Analysis Tool (HEC-WAT)

HEC-WAT provides an overarching interface for many of the HEC suite of software and is designed for interactive use in a multi-tasking environment to provide information for decision makers to support alternative analysis. HEC-WAT was used to integrate HEC-HMS, HEC-RAS and HEC-FIA models adding a wealth of functionality to the modeling system for future advanced analysis and research. It is anticipated that HEC-WAT will not be commonly implemented by the local community of practice at this time, partially due to the development of HEC-WAT still being in the early stages of implementation, however it does provide advanced tools for integration of models and flood risk analysis that provides strong potential for future and more advanced analysis.

HEC-Data Storage System Visual Utility Engine (HEC-DSSVue)

HEC-DSSVue is a Java-based visual utilities program that allows users to plot, tabulate, edit, and manipulate data in a HEC-DSS database file format. These advanced functions infused efficiencies when developing the ARBNM for data stored within the DSS database. It is anticipated that advanced users of the ARBNM will likely utilize HEC-DSSVue to manipulate and analyze data, however many of

the advantages realized were associated with the initial development of the ARB HEC-HMS and HEC-RAS models.

Tiered Modeling Approach

The ARB within Louisiana contains approximately 1,165 mi. of floodplain as identified on FEMA's Flood Insurance Rate Maps (FIRMs). A 6-tier modeling approach was scoped using both 1D and 2D hydraulic approaches to meet the challenges of the unique hydrologic conditions and provide added detail in areas of greater flood risk and complexity.

The 6-tiers:

- #1. Low Detail 1D (300 Stream Miles)
 - Steady state 1D hydraulic modeling using instantaneous peaks from the HEC-HMS model
 - Applied to minimally developed areas with confined floodplains
 - Consistent with FEMA model backed Zone A methodologies
 - Key modeling techniques include:
 - o Cross sections cut directly from LiDAR
 - o Major structures modeled using data approximated from aerials and topography
- #2. Medium Detail 1D (70 Stream Miles)
 - Unsteady 1D hydraulic model using inflows from the HEC-HMS model
 - Applied to areas of minor development and major rivers with confined floodplains
 - Consistent with FEMA Detailed Zone AE methodologies
 - Key modeling techniques include:
 - o Cross sections cut directly from LiDAR with some bathymetric assumptions
 - Detailed survey performed for major hydraulic structures. Minor structures modeled using data approximated from aerials and topography
- #3. High Detail 1D (15 Stream Miles)
 - Unsteady 1D hydraulic model using inflows from the HEC-HMS model
 - Applied to areas of high development along the Amite, Comite and select tributaries with confined floodplains
 - Consistent with FEMA Detailed Zone AE methodologies
 - Key approaches include:
 - Cross sections cut from LiDAR and supplemented with bathymetry and/or bathymetric assumptions
 - Detailed structure coding from survey and/or available plans for all structures
- #4. Low Detail 2D (450 Stream Miles)
 - Unsteady 2D modeling
 - Applied to smaller flooding sources with unconfined floodplains
 - Consistent with FEMA Limited Detail Model Backed Zone AE methodologies

.

- Channels modeled in 2D with break line refinement
- Major structures modeled in 1D using dimensions approximated from aerials and topography

#5. Medium Detail 2D (250 Stream Miles)

- Unsteady 2D modeling
- Applied to moderately developed areas with unconfined floodplains typically shown as FEMA Zone A or AE floodplain
- Consistent with FEMA Limited Detail Model Backed Zone AE methodologies
 - Channels modeled in 2D with break line refinement and minor hydro enforcement
 - Basic level survey performed for major hydraulic structures. Minor structure coding assumed from aerials and topography. Structures coded as 1D features

#6. High Detail 2D (120 Stream Miles)

- Unsteady coupled 1D/2D modeling
- Applied to developed areas with unconfined floodplains typically shown as FEMA Zone AE floodplain
- Consistent with FEMA Detail Zone AE methodologies
 - Channels modeled bank to bank in 1D with the unconfined overbanks modeled in 2D
 - Structures coded as 1D features using survey and/or available plans for all structures

Application of Modeling Approaches

Figure 3 illustrates the modeling approaches for the 1,165 mi. of study streams within the ARB. It should be noted that both Low and Medium detail studies will be scalable and can be enhanced during future studies where greater detail is needed.

A single HEC-HMS hydrologic model was developed for the entire ARB to provide inflows for all study reaches regardless of model detail. This included routed flows to support instantaneous peaks applied to the low detail 1D steady state HEC-RAS study reaches in addition to point inflows from individual subbasins to apply to the dynamic 1D and 2D HEC-RAS model. This model is referred as the ARB HEC-HMS Model throughout this document.

A single HEC-RAS hydraulic model was developed for all medium and high detail 1D study reaches in addition to all 2D study reaches regardless of detail. Routed inflows from the ARB HEC-HMS model were applied to the Amite River at the Mississippi State Line in addition to the routed lateral inflows from low detail 1D reaches within the ARB HEC-HMS model. All other flows from the ARB HEC-HMS model were applied from subbasin flows as point inflows to either the 1D or 2D reaches and were routed dynamically within HEC-RAS which uses the Saint Venant equations as further detailed in the Hydrology and Hydraulic sections of this report. This model is referred to as the *Dynamic ARB HEC-RAS Model*. This will be the main model used for analysis within the ARB and includes all areas of higher flood risk and development potential. It should be noted that streams within Mississippi were not included in

the ARB hydraulic models, however the ARB within Mississippi was include in the ARB hydrologic model.

Two HEC-RAS hydraulic models were developed for the low detail 1D reaches representing the Comite River tributaries and the Amite River tributaries above the confluence of these two rivers. These models are referred to as the *Steady State ARB HEC-RAS Models* throughout this document. It is expected that these models will be used far less frequently than Dynamic ARB HEC-RAS.

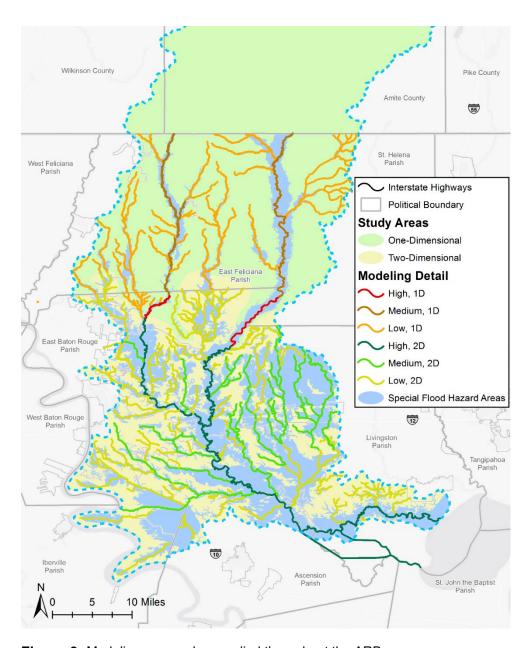


Figure 3: Modeling approaches applied throughout the ARB

22

DATA GAP ANALYSIS AND COLLECTION

The purpose of this task was to identify, collect and review existing technical data including models and survey that could be leveraged for development of the ARBNM.

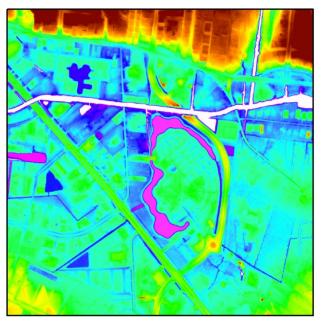
To perform this task, extensive research and stakeholder engagement was performed to identify potential sources of data. This included Freedom of Information Act (FOIA) requests to Federal agencies including FEMA and USACE as well as direct requests to local agencies, stakeholders and experts.

Stakeholder engagement included presenting an overview and status update for the ARBNM development at the Improving the Amite River Basin Flood Forecasting and Hazard Analysis, 2nd Annual Technical Workshop, cohosted by the ARB Drainage and Water Conservation District and the Louisiana State University (LSU) Center for River Studies on October 19, 2017 at the Patrick F. Taylor Hall. More than 90 professionals attended the workshop including representatives from federal agencies, state agencies, local agencies, nonprofits, academia and the private sector. After the one hour presentation, attendees received a request to share available technical data and information to support the development of the ARBNM. As a result of direct solicitations and data request, a number of datasets were received including high water marks, GIS data, modeling data, survey and technical reports. These were individually evaluated to identify data availability and inform the need for additional data collection including ground based structure and bathymetric survey. Table 2 summarizes those datasets received that were directly utilized to develop the ARBNM.

Table 2: Datasets Used to Develop the ARBNM					
Dataset	Source	Data Type	Description	Assessment	Application for Watershed
2018 LA DOTD ARB LIDAR	LA DOTD	LiDAR LAS and DEM files.	QL1 LiDAR developed between January and April 2018 by Dewberry for LA DOTD.	High quality recent LiDAR exceeding FEMA's minimum standards for detailed floodplain studies.	Data used for 2D mesh development and 1D cross section extraction where bathymetric survey is not available.
2016 FEMA Base Level Engineering Study of Amite River HUC 8 watershed	FEMA RVI	HEC- HMS/HEC- RAS hydraulic models	FEMA First Order Approximation (FOA) of flood risk using HEC- HMS/HEC-RAS 2D Rain-on-Grid Methodologies.	Approximate model providing an overview of flood conditions, flow paths and flood risk utilizing the LSU statewide LiDAR dated 2006.	Results used as guidance for model layout including 1D cross section alignment and 2D flow areas.
ARBC, August 2016 Flood HWM	Various Sources	Survey points	Survey points of HWM for the August 2016 flood.	449 HWM. 374 of 449 were assessed to be high confidence.	Used for calibration of the August 2016 flood simulation.

Table 2: Datasets Used to Develop the ARBNM					
Various ARB datasets	Gulf Engineers & Consultants	Hydrologic and hydraulic models.	Variety of hydrologic and hydraulic models including the Amite River, Comite River, Amite River Diversion, and Bayou Manchac	HEC-HMS and HEC- RAS models of varying age and detail.	Geometry from bridges and culverts leveraged for limited detail study areas where feasible.
Spatial file	HNTB	ESRI Shapefile	GIS polygon of 2D model domain from model being developed by HNTB for various parishes.	Boundary polygon of 2D modeling domain.	Boundary utilized to ensure accurate edge- match between model and the ARBNM to streamline future model integration/ merging.
Amite and Comite River 2017 Bathymetric Survey	USACE New Orleans District	Survey files	Post August 2016 bathymetric survey of the Amite River, Comite River and Amite River Diversion Canal.	High quality survey data representative of existing river conditions. Extents include bathymetric cross sections approximately 250 ft. apart for the Amite River from Lake Maurepas, to Denham Springs and the Comite River from the Amite River confluence upstream to Dyer Road.	Survey utilized for wet portions of all 1D model cross sections within the extent of the survey.
1992 Darlington Reservoir Feasibility Study	USACE New Orleans District	PDF	Plans and specifications for Darlington Reservoir concepts	Various project alternatives for concept project.	Plans used to demonstrate use of HEC- WAT for assessment of project alternatives.
Stream gaging for Amite River Diversion Weir	USGS	.KMZ	Results of stream gaging for a single event at the Amite Diversion Weir	Measured flows upstream and downstream of the diversion weir for a low flow event.	Utilized to validate flow split modeled within HEC-RAS.
August 2016 Oblique Imagery	Civil Air Patrol	.JPG	Oblique imagery captured at various times during the August 2016 flood	Aerial imagery captured at various times giving insight into the flood extent.	Utilized to validate 2016 flood simulation where appropriate.

Table 2: Datasets Used to Develop the ARBNM					
2017 CPRA LiDAR	CPRA	LiDAR LAS and DEM files.	QL2 LiDAR collected in 2017.	High quality recent LiDAR exceeding FEMA's minimum standards for detailed floodplain studies.	Data used for 2D mesh development beyond the extent of the 2018 LA DOTD LiDAR.



LIDAR, BATHYMETRY, AND GROUND SURVEY COLLECTION

The purpose of this task was to collect additional survey and LiDAR data to supplement the data collected during the Data Gap Analysis and Collection task. Additional information regarding the application of this information for model geometry on both regional and node specific levels is provided in the Hydrologic and Hydraulic Model sections of this report.

2018 LA DOTD ARB LIDAR

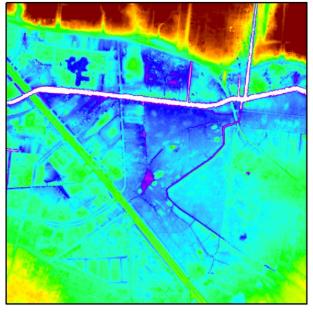


Figure 4: 2018 LA DOTD LIDAR

Figure 5: 2004 LSU LiDAR

Review of the existing 2004 LSU LiDAR indicated significant changes throughout the ARB since the LiDAR was captured. Additionally, technological advances in LiDAR sensors and processing techniques supported the development of higher accuracy data for the purpose of developing hydrologic and hydraulic models within the ARB. To provide more accurate and up to date terrain data for the development of the ARBNM, LiDAR was captured during the timeframe of March 01, 2018 to April 12, 2018 for the entire ARB using USGS National Geospatial Program LiDAR Base Specifications for Quality Level 1 (QL1). **Figure 4** and **Figure 5** highlight the differences between the 2004 and 2018 LiDAR datasets within an area of Baton Rouge.

Aerial data acquisition was performed by Precision Aerial Reconnaissance and all ground survey including checkpoints was performed by Forte & Tablada. Dewberry was responsible for LiDAR classification, breakline production, Digital Elevation Model (DEM) production, any derivative product development, and quality assurance. The tested Root Mean Square Error in the Z direction (RMSEz) of the classified LiDAR data for checkpoints in non-vegetated terrain equaled 3.6 cm. compared with the 10 cm. specification. Meanwhile, the Non-vegetated Vertical Accuracy (NVA) of the classified LiDAR data computed using RMSEz × 1.9600, was equal to 7 cm. compared with the 19.6 cm. specification.

Detailed breaklines and bare-earth Digital Elevation Models (DEMs) were produced for the project area. Data was formatted according to tiles with each tile covering an area of 1,500 meters by 1,500 meters. A total of 2,410 tiles were produced for the project encompassing an area of approximately 1,900 sq. mi. LAS files use an industry standard binary format for storing airborne LiDAR point cloud data in a classified manner. LAS allows LiDAR data to be examined in its native format and through use of classification codes that allow users to determine what points represent as shown in **Table 3**.

Table 3: ASPRS V1.4 Lidar Point Classes Required For The 2018 LA DOTD Lidar		
Classification Value	Meaning	
1	Unclassified	
2	Ground (Bare Earth)	
7	Low Noise	
8	Model Key Points	
9	Water	
17	Bridge Deck	
18	High Noise	

The bare earth DEMs supplemented with ground survey and bathymetry of channels were primarily used to develop the Dynamic ARB HEC-RAS model geometry, however LAS point cloud information was utilized to supplement survey data for structures critical to hydraulic modeling including portions of bridges and roadways.

2017 QL2 LiDAR was obtained from the Louisiana Coastal Protection and Restoration Authority (CPRA) which covered much of the lower Amite River watershed including adjacent areas beyond the Amite River HUC8 boundary not captured by the 2018 LA DOTD LiDAR. For isolated areas beyond the extent of the HUC 8 2018 LA DOTD LiDAR and 2017 CPRA LiDAR datasets, 2004 LSU LiDAR was used.

2017/18 LA DOTD ARB Survey and Bathymetry Collection

To supplement the USACE 2017 bathymetric survey, additional survey data was collected to support the development of the Dynamic ARB HEC-RAS hydraulic model geometry. This data was collected by Forte & Tablada as a subcontractor to Dewberry and included detailed channel cross section survey, major bridge structure survey, weir survey and limited detail culvert survey.

All survey data was collected using the North American Datum of 1983 (NAD 83) horizontal datum, Epoch 2010. The projected coordinate system used for survey data is the State Plane Coordinate System, Louisiana South Zone (1702). The vertical datum is the North American Vertical Datum of 1988 (NAVD 88) utilizing Geoid 12B.

Survey collection included:

- 30 high detail surveys of major bridge structures located on the Amite River, Comite River, Amite River Diversion Canal, Bayou Chenne Blanc and the Chinquapin Canal
- High detailed survey of the Amite River Diversion Weir
- High detail survey of 51 bathymetric channel surveys
- Limited detail survey of 198 hydraulic structures including bridges and culverts located on tributaries to the Amite and Comite Rivers

Survey Methodologies

A range of survey methods were implemented using a variety of surveying equipment. Control and cross section data, where applicable, was collected using Trimble R10 GNSS/GPS receivers tied to LSU C4G NET or Leica Smart Net Real-time Network (RTN). Cross section data was collected using Trimble S-series robotic total station & Trimble TSC-3 Data Collector, and Leica Sprinter 150 Digital Level. Additionally the Sonarmite Single Beam Fathometer, R2Sonic 2024 Multibeam Echosounder, I2NS Type II (Applanix WaveMaster Inertial Navigation System (INS)), and AML BASE X2 Sound Velocity Profiler systems were utilized to collect bathymetric survey where these methods provided improved efficiency.

Cross Section Survey

Detailed channel cross sections were surveyed at strategic locations beyond the extent of the 2017 USACE bathymetric survey. These cross sections included locations along the Amite River, Comite River, Old River and Bayou Chinquapin. The channel surveys captured all significant grade changes within the channel including the top of banks, bottom of banks, low and high points of the channel and numerous intermediate points. The survey extended approximately 100 ft. beyond the top of the channel bank to enable a direct comparison with LiDAR to be performed supporting the validation of both datasets.

Data was gathered using both GPS and Conventional surveying. Control was set on each cross section by using GPS and taking 3-180 epochs (180 epochs = 1 session) on each control point and averaging the three sessions together. For quality assurance, each epoch was analyzed for outliers before averaging. Sessions that were not within a 0.165-ft. tolerance were discarded and additional sessions were collected. Once control was established, cross section data was obtained by conventional ground survey methods. If excessive water depths were encountered, bathymetric surveying methods were used instead.

.

When excessive water depths were encountered at cross-sections, a boat mounted Sonarmite fathometer integrated with GPS was used to gather data of the river bathymetry. The Sonarmite combined with the Trimble R-10 and TSC-3 made an "easy-to-use" system that produced a horizontal and vertical position with the GPS and a water depth with the Sonarmite. For quality control, the Sonarmite's depth reading were field verified against a hard depth readings taken with a level rod. If the two readings matched within 10 cm., the data was considered acceptable and the process was repeated on each cross-section.

The second bathymetric surveying method was the R2Sonic Echosounder system. This system integrated the GPS method for position, R2Sonic Echosounder for acoustic ranging, with INS for navigational corrections, and AML BASE X2 for sound velocity profile adjustment to produce a point cloud of the water bottom in locations that included the Amite River Diversion Canal and weir.

Other unconventional methods were used when tree coverage engulfed the top of bank and/or dry ground and GPS method became unsuitable to set control or when excessive water depths were encountered. When tree coverage engulfed the top of bank, first a surface water elevation shot was taken at the cross-section for vertical control before two stakes were placed on the cross section in the water bottom and coordinates were established on each stake. With the digital level setup on the cross-section, a distance was taken from one of the stakes to establish a location of the level. Once a horizontal position of the instrument was gathered, a vertical position was established using the water surface as a temporary benchmark. Elevations and distances were then recorded at a +/- 25 ft. interval along the cross-section to establish horizontal and vertical positions.

Detailed Bridge Surveys

All detailed bridge structures were captured using Faro Focus 120 and Focus X330 for terrestrial laser scans. The data was registered together and tied to survey control with Faro Scene Software. It was then exported using a 1-in. spatial filter to reduce the file size. This provided full point cloud coverage of the structures including piers, abutments and decks from which hydraulic engineers were able to extract critical information for development of the Dynamic ARB HEC-RAS hydraulic model bridge geometry. **Figures 6** and **Figure 7** illustrate example point clouds from bridge scans.

Terrestrial bridge scanning provided notable efficiencies when compared to traditional survey of large bridges with the added benefit of a more comprehensive capture of bridge features. This virtually eliminated the issue of survey omissions of critical hydraulic features that traditionally require surveyors to remobilize at the request of hydraulic engineers who require further data to accurately code bridge geometry. This empowered the hydraulic engineers to extract the data they needed such as low chord elevations, pier shapes and skew angles rather than rely on the limited points traditionally collected by surveyors. This was particularly valuable for unusual structures.

Figure 6: Example bridge scan point cloud

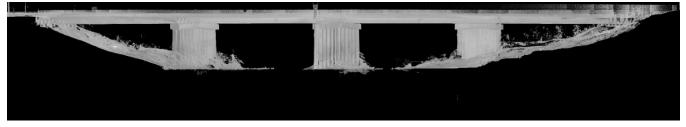


Figure 7: Example bridge scan point cloud illustrating the bridge skew and pier locations

Limited Detail Survey

For study reaches scoped as medium detail, limited detail survey of bridges and culverts was collected. For bridges, sketches were developed and annotated with field measurements to include number and size of bents and piles, skew angle, bridge length and width, low chord, length between bents, height of bridge deck and guardrail, and bridge material. For culverts, sketches were developed and annotated with field measurements to include opening shape, width and height, skew angle, amount of sediment, materials and height between road surface and invert of opening. All bridge and culvert sketches were supplemented with photographs of the structures and adjacent channels.

HIGH WATER MARK (HWM) AND OBSERVED DATA COLLECTION

This task consolidated various sources of High Water Mark (HWM) data into GIS formats, assessed quality, and determined potential application for calibration and verification of the ARBNM. HWMs provide crucial information for historical documentation of floods and can be used for a number of applications including:

- Estimation of flood frequency
- Assessment of the accuracy of FIRMs
- Preparation of inundation maps
- Input to building performance assessments
- Calibration of models that simulate the flood
- Prioritization of mitigation projects and preparation of benefit-cost analyses
- Determination of depth of flooding of structures

In addition to HWM data available from USGS and other streamflow gages, HWMs can be identified after floods through various indicators. Examples of these indicators include mudlines and stains on buildings and other objects (Figures 8-9), debris lines on fences (Figure 10), and mudlines on the ground and vegetation (Figure 11). The quality of surveyed HWMs can vary greatly due to a number of factors including the perishable nature of HWMs as a result of the time lapse and weather conditions before HWMs can be flagged, the quality of the HWM and human judgement. Typically, larger rivers with longer duration floods leave higher quality, more easily identifiable HWMs. This is due to the longer duration of the high water and the higher turbidity of the water, both which result in more easily recognizable marks. Additionally, multiple peaks may result in multiple HWMs, as can be seen in **Figure 9**. Often the secondary peaks can leave a more visible water mark than the true HWM which due to a reduced duration may leave less evidence and mislead the HWM flagger or surveyor.

Figure 8: Example mudline on exterior of building.

Figure 9: Example mudline within a residential building.

August 2016 Flood HWM Data

As previously noted, various sources of HWM survey data were received through the efforts of the Amite River Basin Drainage & Water Conservation District (ARBC) and their partners following the August 2016 flood. 449 HWMs were provided to LA DOTD from the ARBC for this study.

In addition to HWM survey for the August 2016 flood, multiple USGS and Coastwide Reference Monitoring System (CRMS) gages were available that provided observed stage information for the August 2016 flood and various additional events. This data included stage-time series as well as flow-time series.

Review of ARBC HWM Data

The HWM data was carefully reviewed to assess the quality. This included comparing HWMs with surrounding HWMs to identify outliers through the process of triple validation. Triple validation is a widely utilized method of quality control whereby three or more HWMs located within the same general vicinity are compared to ensure that they yield similar elevations. When two or more HWMs yield similar elevations, users can have a higher level of confidence that the data is accurate by eliminating the outlier HWM.

Figure 10: Example debris line on fence. *Source: SJB Group, LLC*

Figure 11: Example mudline on vegetation.

Source: T. Baker Smith

Figure 12: Triple validation of HWMs

Figure 12 illustrates the triple validation process whereby two HWMs (37.238 and 37.066) agree relatively closely and are classified as high confidence, while a third elevation (37.948) appears slightly higher than expected and is therefore classified as only moderate confidence. Additionally, HWMs were reviewed for expected trends in water surface elevation. This was generally based on the assumption that water surface elevations will decrease in the downstream direction of flow and that in wide, flat floodplain areas such as the lower Amite River below Denham Springs, water surface elevations will exhibit only minimal changes.

Table 4 provides a summary of the methodology used to assess and classify the quality of HWM and the count of HWMs per classification.

Table 4: Summary of HWM Quality Assessment and Count				
Confidence Assessment	Description of Confidence Assessment*	Number of HWMs		
High	HWM elevations that generally agree within approximately 0.5 ft. of one or more HWMs in the general vicinity expected to demonstrate minimal changes in water surface elevation.	373		
Moderate	HWM elevations that generally agree within approximate 0.5 - 1 ft. with one or more HWMs in the general vicinity expected to demonstrate minimal changes in water surface elevation. Or HWM elevations that do not follow an expected trend such as water surface elevations decreasing in the downstream direction, or irregular outlier changes in water surface elevations in flat, wide floodplain areas.	50		
Low	HWM elevations that are an outlier by approximately 1 ft. or greater when compared against 2 or more adjacent HWMs in the general vicinity expected to demonstrate minimal changes in water surface elevation. Or HWM elevations that differ greatly from an expected trend such as water surface elevations decreasing in the downstream direction, or large, irregular outlier changes in water surface elevations in flat, wide floodplain areas.	26		
Total:		449		

^{*}Engineering judgement is used when applying tolerances for HWM quality classification with these ranges generally being increased when HWMs are spaced further apart.

Figure 13 provides an example of the HWM locations within a portion of the ARB. Of the ARBC's 449 HWM's reviewed and classified:

- 373 were classified as having a high confidence (83%);
- 50 were classified as having a moderate confidence (11%);
- And 26 were classified as having low confidence (6%).

The HWMs were included as observed data within the 1D portions of the ARB HEC-RAS model in addition to being spatially referenced and labeled within RAS Mapper.

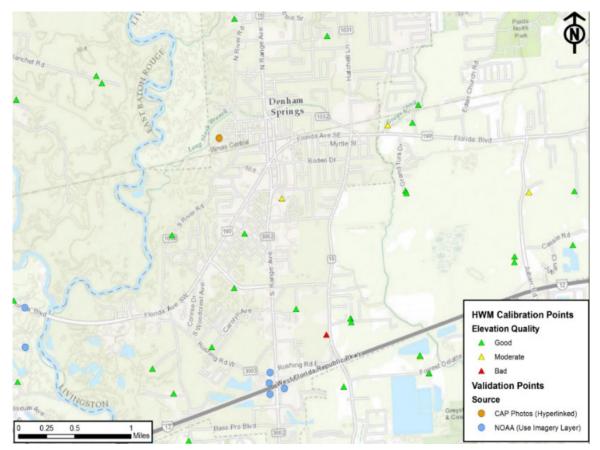


Figure 13: HWM location examples

Other Sources of HWMs for the August 2016 Flood

Time series data including stage and flow from USGS and CRMS gages were obtained from online sources and converted from stage to the NAVD 88 vertical datum. This data was saved within the ARBNM HEC-DSS database enabling the time series data for both stage and flow to be directly read into HEC-HMS and HEC-RAS as observed data that can be dynamically viewed using some of the visualization tools within HEC-HMS and HEC-RAS. Figure 14 demonstrates the display of modeled and observed data for USGS gage 073770500 Amite River near Darlington, LA, for an initial calibration run using the HEC-RAS Plot Stage and Flow Hydrographs function enabling a quick comparison of results to inform the calibration actions of the HEC-RAS model. It should be noted that the simulated flows reported by HEC-RAS Plot Stage and Flow Hydrographs only represent the flows within the 1D cross section. Therefore in areas where coupled 1D/2D approaches are used, this function will underestimate the peak flow and volume of the hydrograph since it does not account for coupled 2D flows.

The observed peak stage for the August 2016 Flood were also extracted from all available USGS and CRMS gages and consolidated with the ARBC HWMs.

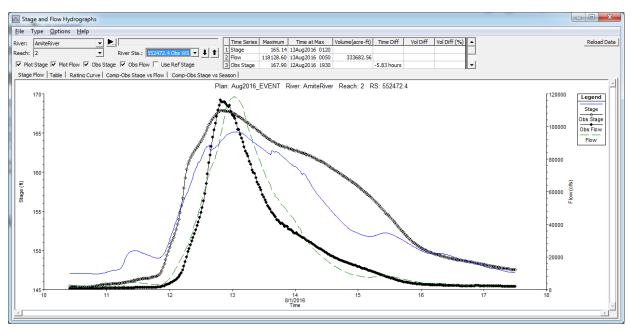


Figure 14: Example visualization of observed and modeled data using the HEC-RAS Plot Stage and Flow Hydrographs function.

March 2016 Flood HWM Data

Similarly to the August 2016 flood, multiple USGS and Coastwide Reference Monitoring System (CRMS) gages were available that provided observed stage information for the March 2016 flood that were saved to the HEC-DSS database. Additionally the USGS Flood Event Viewer (https://stn.wim.usgs.gov/FEV/#LouisianaMarch2016) provided an additional seven HWMs which were combined with the observed peak elevations from the USGS and CRMS gages. The HWMs were included as observed data within the 1D portions of the ARB HEC-RAS model in addition to being spatially referenced and labeled within RAS Mapper.

October 2017 Flood HWM Data

No sources of HWM data were available for the October 2017 minor flood event with exception to those available from USGS and CRMS gages. Time series from these sources were saved to the HEC-DSS database in addition to peak elevations.

August 2017 Flood HWM Data

No sources of HWM data were available for the August 2017 minor flood event with exception to those available from USGS and CRMS gages. Time series from these sources were saved to the HEC-DSS database in addition to peak elevations.

HYDROLOGIC MODEL

Version 1.0, February 2019 of the ARB hydrologic model was developed in HEC-HMS Version 4.2.1 and represented all study reaches within the study including those modeled in low, medium and high detail.

As further illustrated in Figure 15, the geometry of the ARB HEC-HMS model is comprised of more than 2,000 hydrologic elements including:

- More than 700 subbasins representing 1,960 square mi. of watershed;
- More than 550 hydrologic routing reaches; and
- More than 700 hydrologic junctions

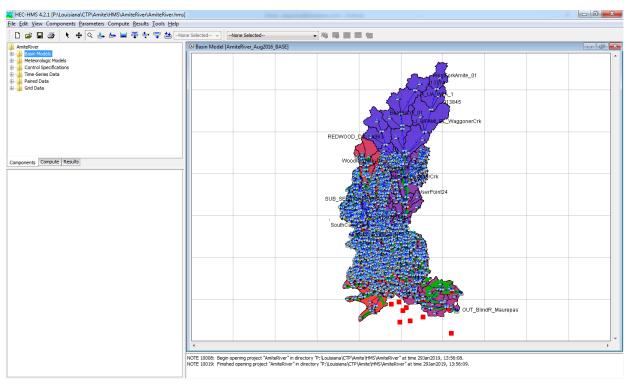


Figure 15: ARB HEC-HMS Hydrologic Model Overview

Model Geometry, Input, and Parameters

The ARB HEC-HMS model uses a variety of data sources for development of model geometry and input data. This includes terrain data, land use data, soils data, precipitation and hydraulic data.

Subbasins

Hydrologic subbasins within HEC-HMS were delineated using the 2004 LSU LiDAR dataset. It should be noted that at the initial time of hydrologic model development, this was the best available dataset since the 2018 LA DOTD LiDAR was not available. However, since the data is only used to delineate watershed boundaries, differences between this dataset and 2018 datasets will be negligible in hydrologic terms. This data was converted to a 20 ft. cell DEM.

The DEM was processed within GIS to determine flow accumulation patterns throughout the basin. This was done through careful hydro enforcement to ensure that embankments do not create artificial barriers within the hydrologic model and that natural sinks are able to drain appropriately. Where available, local storm water inventory was utilized to identify flow paths and storm water infrastructure that was critical to determining drainage paths. Subbasins were delineated at critical hydrologic locations to adequately capture the volume and magnitude of runoff. Subbasin parameters including Transform and Losses are summarized in **Appendix 1**.

Subbasin Transform

Subbasin transform utilized the ModClark methodology which accounts explicitly for variations in travel time to the watershed outlet from all regions of the watershed. As such, the ModClark method can be categorized as a quasi-distributed method rather than a lumped method like the more traditional Clark Unit Hydrograph method. This methodology was required due to the gridded NEXRAD radar rainfall which was used. The ModClark Method eliminates the time-area curve and time of concentration to develop a translation hydrograph and instead uses a separate travel time index for each grid cell which is then scaled by the overall time of concentration. Note that a time-area curve defines the cumulative area of the watershed contributing runoff to the subcatchment outlet as a function of time (expressed as a proportion of Tc).

To use the ModClark model, a gridded representation of the basin is defined. For the ARB HEC-HMS model, the standard hydrologic grid (SHG) was used. The SHG is a variable-resolution-cell map grid defined for the conterminous United States and the coordinate system is based on the Albers equal-area conic map projection. A 1,000 meter grid resolution was selected for the study area as that was determined suitable for the general purpose hydrologic modeling with the Stage IV radar precipitation that was calibrated during hydrometeorology. In **Figure 16**, an image of the grid cell file is shown for the project which contains the subbasin name, the lower X and Y coordinates, hydrologic travel length of the grid cell, and area of the subbasin within the grid cell.

```
Parameter Order: Xcoord Ycoord TravelLength Area
2
    End:
4
   Subbasin: ByuBraud US LOC
         GridCell: 466 801 10.977755905511811 0.19884194224694704
         GridCell: 467 801 10.603777463804926 0.012887570630035271
6
         GridCell: 465 802 11.088266367157734 0.10552841362294477
         GridCell: 466 802 10.360635874396749 0.98497227077932914
         GridCell: 467 802 10.011452247904495 0.71121454095832415
9
         GridCell: 468 802 11.045309721869444 0.069071467990177132
10
         GridCell: 465 803 9.4744411988823973 0.064775033820444167
11
         GridCell: 466 803 8.6377956724663427 0.97119006379483552
12
13
         GridCell: 467 803 8.2298956613538223 1.0000030738474075
```

Figure 16: HEC-HMS basin Grid Cell File

Parameters required for the ModClark method include the time of concentration (Tc) and a storage coefficient (R). The time of concentration defines maximum travel time in the subbasin from the point farthest away from the outlet and the storage coefficient represents the linear reservoir of each grid cell which represents an index of temporary storage of precipitation excess in the watershed as it drains to the outlet point. These parameters were calculated using the Fort Bend, Texas Stormwater Design Manual. This methodology was selected because the hydrological characteristics of the equations are very similar in the ARB.

The Fort Bend, Texas Stormwater Design Manual defines parameters through drainage area physiographic characteristics which include the length, slope and roughness of the basins longest flow path (Tc), average basin slope, and the effective impervious area. The effective impervious area is further defined by the percent of the subbasin that is developed and the average percent of impervious cover of the developed area. The parameters related to effective impervious area were developed from the 2011 National Land Cover Dataset (NLCD) Landcover and Impervious datasets while the other parameters were developed from the LiDAR topography. Due to the inherent nature of hydrologic routing, the presence of significant ponding in a subbasin can have a pronounced effect on the nature of the runoff hydrograph. Storage in ponding area tends to flatten and delay the hydrograph.

The storage coefficient is then further refined by ponded storage within a subbasin. The value for ponded storage was taken from the National Hydrology Dataset Plus (NHD+). Subbasin transforms were validated through the review of the HEC-RAS results and were demonstrated to provide only minor sensitivity to the flows within the ARBNM, however this sensitivity is likely to become more pronounced if the study ARBNM is used for assessment of very small drainage features.

The Green and Ampt loss method is used for all subbasins. The Green and Ampt method uses five parameters to determine precipitation infiltration losses:

- **Initial Water Content**: Represents the initial saturation of the soil at the start of the simulation and is given in terms of volume ratio.
- **Saturated Water Content**: Represents the maximum water holding capacity in terms of volume ratio and is often assumed to be the total porosity of the soil.
- Wetted Suction Front: This is generally assumed to be a function of the soil texture.
- **Hydraulic Conductivity**: Represents the constant percolation rate of saturated soil
- Percentage Impervious: This specifies the percentage of area for which no losses will be calculated.

Initial water content was estimated through the review of initial losses for historical streamflow and precipitation data whereby cumulative precipitation totals were compared to streamflow at available gages. The initial abstraction was assumed to have been met when the streamflow was observed to begin positively responding to rainfall. This parameter is further discussed in the section Calibration.

The saturated water content, wetted suction front and hydraulic conductivity for each subbasin was estimated using GIS by correlating the Natural Resources Conservation Service (NRCS) Soil Survey Database (SSURGO) which provides classified soil polygons, to the recommend values in Table 12 of the March 2000, *HEC-HMS Technical Reference Manual*. By attributing each individual soil class within SSURGO to this table, subbasin averages were determined.

The percentage impervious for each subbasin for existing landuse conditions was estimated using the 2011 NLCD published by the Multi-Resolution Land Cover Characteristics (MRLC) Consortium. The NLCD is updated every five years. As of February 2019, the 2016 NLCD dataset has not yet been finalized and therefore was not available for use at time of model development. This data was used to determine subbasin total impervious percentage.

Routing

Hydrologic routing sections were developed to connect subbasins within the ARB HEC-HMS model using the Modified Puls routing methods with parameters being derived from a variety HEC-RAS hydraulics model simulations. All hydrologic routing within the high and medium detail reaches of the ARBNM are performed using the dynamic HEC-RAS model within both 1D and 2D domains. Within the Dynamic ARB HEC-RAS model, inflows are generally received directly from the HEC-HMS subbasins outflows via the HEC-DSS database. This allows for more advanced dynamic routing to be performed using the full Saint Venant equation as used for both the 1D and 2D HEC-RAS unsteady-flow computation engines.

For the East and West Fork's of the Amite River in Mississippi, a simplified HEC-RAS model was developed utilizing a range of arbitrary flows to determine the stage-storage relationships needed for Modified Puls Routing to enable flows to be routed to the confluence of the two forks. For small tributaries modeled in low detail that flow into the Amite and Comite

Rivers, the low detail HEC-RAS models were used to extract routing parameters for use within the HEC-HMS model.

Meteorological Models

Meteorological models within the ARB HEC-HMS model utilize both gridded and point precipitation datasets stored within the HEC-DSS database for a selection of historical precipitation events and generalized designs storms intended to facilitate the simulation of a range of Annual Exceedance Probability floods.

Meteorological models include:

- Four Historic Precipitation Events (gridded precipitation)
 - o August 2017 flood event
 - October 2017 flood event
 - March 2016 flood event
 - August 2016 flood event
- 30 Design Precipitation Events (One design storm with 10 precipitation depths and three centers)
 - 8 in.
 - o 10 in.
 - o 12 in.
 - o 14 in.
 - o 16 in.
 - o 18 in.
 - 20 in.
 - o 22 in.
 - o 24 in.
 - o 26 in.

The selection and development of the historical precipitation events is further discussed in the Calibration section and the development and application of design precipitation events is further discussed in Design Flood Simulations section.

HYDRAULIC MODEL

As previously discussed, three HEC-RAS hydraulic models were developed. This includes the Dynamic ARB HEC-RAS Hydraulic Model which will be the primary model for the ARB as well as two Steady State ARB HEC-RAS hydraulic models which covers smaller tributaries to the Amite River and Comite River that were studied using 1D methods.

Dynamic HEC-RAS Hydraulic Model

Version 1.0, February 2019 of the Dynamic ARB HEC-RAS hydraulic model was developed in HEC-RAS Version 5.0.6. As further illustrated in **Figure 17**, the geometry of the ARBNM comprises of:

- More than 800 1D cross sections within seven reach segments;
- 30 major 1D bridges (many with multiple openings);
- More than 400 1D lateral structures primarily connecting 1D reaches to 2D flow areas and 2D flow areas to other 2D flow areas;
- 21 2D flow areas:
 - o More than 265,000 2D cells with over 3,200 enforced breaklines;
- Nearly 500 Storage Area/1D connections representing bridges and culverts in 2D flow areas; and
- More than 400 boundary condition

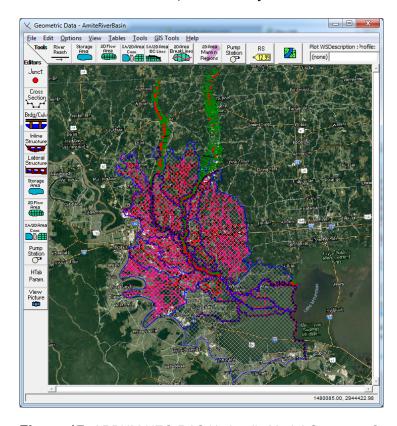


Figure 17: ARBNM HEC-RAS Hydraulic Model Geometry Overview

Computation Methods

For 1D model reaches, the ARBNM uses the Finite Difference 1D Numerical Solution (Classic HEC-RAS methodology) with the default Skyline/Gaussian matrix solver. Due to the relatively flat terrain and low velocities found throughout the ARB, 1D simulations were run without the 1D Mixed Flow Option selected since super critical flow was not expected to occur anywhere within the study area.

For 2D flow areas, the ARBNM uses the Finite Volume, Full Momentum (Saint Venant) solution. HEC-RAS also provides a simplified solution based on the Diffusion Wave equations which may be suitable for some applications although this simplified approach has not been utilized in the ARBNM. The ARBNM was optimized to run using a fixed 30-sec time step with resulting water surface calculation tolerances generally being targeted to be less than 0.1 ft. for detailed 1D reaches and less than 0.2 ft. for 2D areas. Due to the medium detail approach applied in many 2D flows areas, these tolerances may be exceeded in isolated areas.

Future releases of HEC-RAS are anticipated to include a Finite Volume 1D numerical solution which is expected to provide improved stability and efficiency between the 1D and 2D solutions since 1D and 2D simulations will be solved simultaneously within a single engine rather than separately. This approach is anticipated to reduce compute times and significantly improve 1D numerical stability. It is strongly recommended to perform thorough testing and validation prior to utilizing this option if included in future releases.

Model Geometry

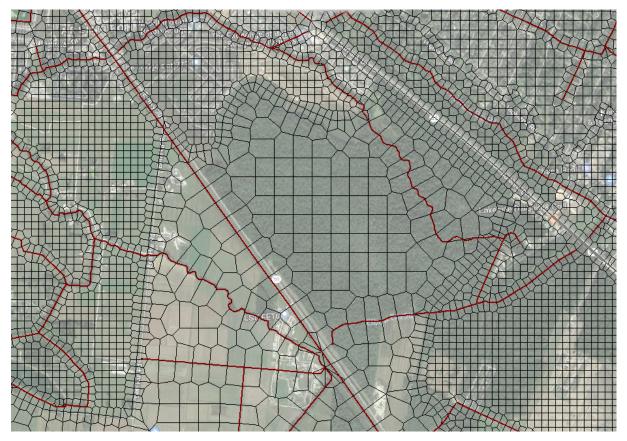
The ARBNM uses a variety of data sources for development of model geometry within HEC-RAS including ground survey, bathymetric survey, field measurements, estimations from aerial imagery and LiDAR data. Geometric features within HEC-RAS using these data sources include 1D cross sections, bridges, weirs, culverts and lateral structures in addition to the 2D mesh.

2D Flow Area Mesh

The ARBNM consists of 21 2D Flow Areas which define the extent of an individual computational mesh. Each 2D Flow Area contains a generally regular mesh with varying resolutions of cells. Two primary terrain data sources were utilized for the underlying terrain used to generate the 2D mesh properties as highlighted in **Table 5**. Mesh cells were generally created using regular squares of varying resolutions ranging from as coarse as 1,000 ft. squares in very flat areas of minimal development, to 100 ft. squares in areas of higher flood risk and more complex terrain. Since HEC-RAS uses a finite volume approach, whereby each cell face is represented as an irregular cross section extracted from the underlying terrain, cell resolution can be considered comparable to the concept cross section spacing. Therefore larger cell sizes can be used than typically used with traditional finite difference and finite element approaches to 2D hydraulic modeling which normally use cell averaged elevations for cell faces.

To further refine 2D meshes in areas critical for the accurate simulation of overland flows, breaklines have been used to enforce key features of the terrain and ensure that the model reasonably simulates the movement of overland flow. This includes breaklines along notable channels which concentrate flows and ridge lines that allow flows to spill from one area to another across features such as road embankments, levees and natural ridgelines. Breakline enforcement along ridges also helps to minimize computational 'cell leakages', whereby 2D cells straddling a ridge line rather than following it can artificially allow water to flow upstream to

downstream as if the embankment was not there. **Figure 18** illustrates an area of the Bayou Manchac 2D Flow Area which contains multiple cell resolutions and breaklines. More than 3,200 breaklines were enforced into the 2D Flow Areas of the ARBNM. While the model was primarily developed for the Amite River HUC 8 watershed, spills between adjacent HUC8s necessitated 2D Flow Areas beyond the study area.


This included the following 2D Flow Areas:

- HNTB Placeholder: This area was included as an approximate study area to refine the external boundary conditions of the BayouManchac and AmiteR_Div_SW 2D Flow Areas which include the Marvin Braud and Laurel Ridge levee systems. This 2D Flow Area extent utilized the polygon feature from models developed by HNTB on behalf of Ascension Parish with the goal of streamlining the future integration of models. Since it is modeled only in approximate detail without any internal hydrologic inflows, the results of this area are not intended to be utilized at this time.
- **BlindRiver**: This 2D Flow Area was included as an approximate area to refine the boundary conditions of the AmiteR_Div_SW 2D flow area. Since it is modeled only in approximate detail without any internal hydrologic inflows, the results of this area are not intended to be utilized at this time.

Table 5: Summary of Terrain Data Used for 2D Flow Areas					
2D Flow Area	Terrain Source				
AmiteComite	2018 LA DOTD LiDAR				
AmiteEast	2018 LA DOTD LIDAR				
AmiteR_Div_NE	2018 LA DOTD LiDAR supplemented with 2017 CPRA LiDAR				
AmiteR_Div_SW	2018 LA DOTD LiDAR supplemented with 2017 CPRA LiDAR				
AmiteR_Grays	2018 LA DOTD LIDAR				
AmiteWest	2018 LA DOTD LIDAR				
Amite_AmiteEast	2018 LA DOTD LIDAR				
BayouManchac	2018 LA DOTD LIDAR				
BlindRiver	2017 CPRA LiDAR supplemented with 2004 LSU LiDAR				
ClaycutJones	2018 LA DOTD LIDAR				
ColyellCreek	2018 LA DOTD LiDAR supplemented with 2004 LSU LiDAR				
ComiteEast	2018 LA DOTD LIDAR				
ComiteR_NP	2018 LA DOTD LIDAR				
ComiteR_US	2018 LA DOTD LIDAR				
ComiteWest	2018 LA DOTD LiDAR supplemented with 2004 LSU LiDAR				
FrenchSettlement	2018 LA DOTD LIDAR				
GraysCrk	2018 LA DOTD LIDAR				
HNTB_Placeholder	2018 LA DOTD LiDAR supplemented with 2017 CPRA LiDAR				
Maurepas	2018 LA DOTD LiDAR supplemented with 2017 CPRA LiDAR				
RedwoodCreek	2018 LA DOTD LIDAR				
Unt_ComiteR	2018 LA DOTD LIDAR				
WardsCreek	2018 LA DOTD LIDAR				

Figure 18: Example of 2D Mesh with varying cell resolution and breaklines used to enforce streamlines and ridgelines within the upper reaches of the Bayou Manchac 2D Flow Area.

2D Flow Area Hydraulic Structures

All hydraulic structures within 2D areas have been modeled in medium detail. HEC-RAS utilizes Storage Area/2D Connections (SA/2D Connections) to model hydraulic structures both between and within 2D Flow Areas. HEC-RAS Version 5.0.6 supports the use of weirs, gates and culverts, but bridges are currently not supported.

Geometric data for all hydraulic structures within 2D flow areas were coded using a variety of data sources. For all embankments, elevation data within the SA/2D Connections were extracted from the 2018 LA DOTD LiDAR. For all structures modeled within 2D areas, inverts were assumed from the 2D mesh head water and tail water elevations. Since the 2D mesh does not include channel survey, many structure inverts were artificially raised to ensure that they are higher than the adjoining 2D cell headwater and tailwater since HEC-RAS does not allow structure inverts or road deck inverts to be below the adjoining 2D minimum cell elevations.

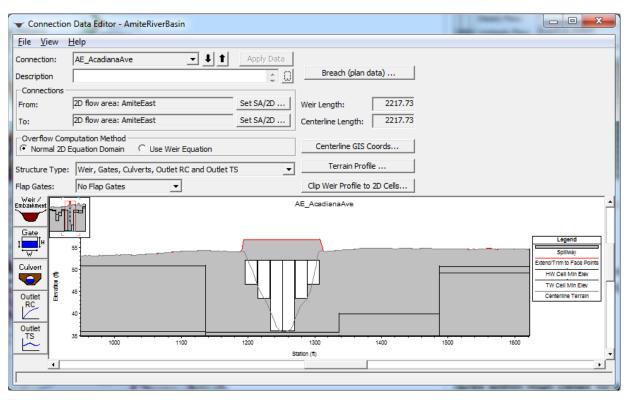
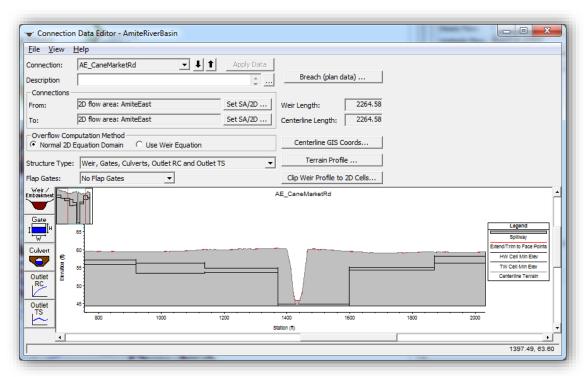
Dimensions for hydraulics structures were obtained for a variety of sources including:

- Bridge openings approximated from LiDAR data and modeled as a slot in the SA/2D Connection
- 2017/2018 limited detail ground survey by LA DOTD which included basic information pertaining to structure shapes, materials and opening dimensions.

46

- 2018 ground survey provided by CSRS on behalf of the City of Central Note that while this survey included inverts, as noted previously, these were often artificially raised within the model to ensure that they were higher than the adjacent 2D cell minimum elevations per HEC-RAS limitations.
- Dimensions taken from historical hydraulic models gathered during data collection
- Dimension approximations using various sources of aerial imagery and terrain data

Since HEC-RAS 5.0.6 does not support bridges within 2D Flow Areas, bridges were simulated using one of two methods. Firstly, bridges were modeled by assuming multiple culverts, approximately representing bridge spans between piers as demonstrated in Figure 19. Secondly, bridges without survey data and those that created excessive numerical instability within the 2D Flow Area were modeled as slotted embankment openings. Where LiDAR data approximated the embankment with the bridge deck removed, this was used directly to simulate the bridge opening within the Weir/Embankment as demonstrated in Figure 20. Where LiDAR data did not represent the bridge opening, the bridge opening in the Weir/Embankment was estimated from aerial imagery and terrain.

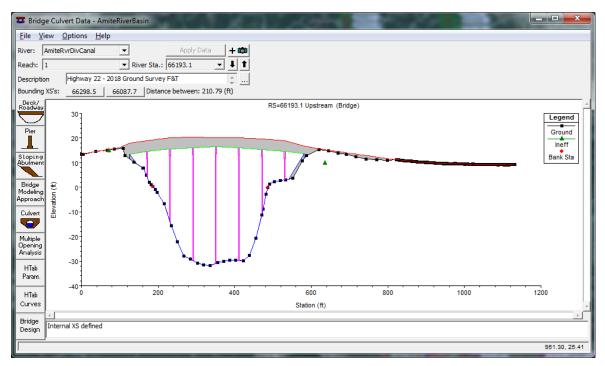

Figure 19: Example of a bridge approximated as multiple culverts within SA/2D connections

Figure 20: Example of a bridge approximated using LiDAR data to simulate the opening for the Weir/Embankment within SA/2D Connections.

Figure 21: Example of bridge coding from ground survey at Highway 22 at the Amite River Diversion Canal.

High Detail Study Area 1D Hydraulic Structures, including 1D structures within High Detail 1D and 2D Areas

Hydraulic structures located within the high detail study reaches of the Amite River, Comite River, Amite River Diversion Canal, Bayou Chenne Blanc, and the Chinquapin Canal were coded into the Dynamic ARB HEC-RAS geometry using combinations of traditional ground run survey methods and newer terrestrial laser scanning techniques collected through the 2017/2018 LA DOTD survey collection performed by Forte & Tablada. Hydraulic structures included the Amite River Diversion Weir in addition to 30 major bridges and their relief openings in road and railroad embankments. As seen above, Figure 21 illustrates the Highway 22 Bridge coding on the Amite River Diversion Canal using the 2017/2018 LA DOTD survey.

Multiple Bridge Analysis

Where a road or rail embankment contains multiple bridges or culvert openings, the HEC-RAS Multiple Opening Analysis option has been used to define openings and conveyance areas as illustrated in **Figure 22**. This function allows the user to define multiple bridge openings and areas of conveyance while automatically determining stagnation points between openings to more accurately estimate flow and elevations through the multiple openings. Further information regarding this technique can be found in the HEC-RAS User Manual and Hydraulic Reference Manual.

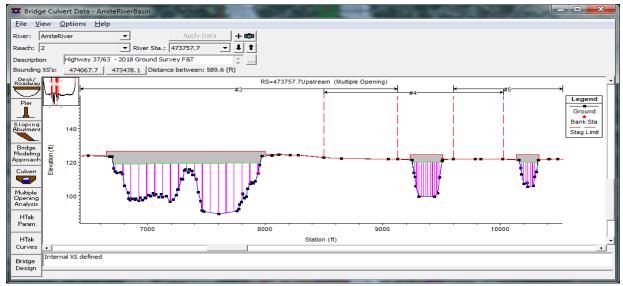


Figure 22: Example of multiple opening bridge at highway 37/63 on the Amite River

High Detail Cross Sections

Cross sections for all 1D study reaches including 1D channels within high detail 2D study areas were coded using combinations of ground based survey, LiDAR and bathymetric survey. High detail cross sections were located along the main channels of the Amite River, Comite River, Amite River Diversional Canal, Blind River (downstream of the Amite River Diversion Canal), Bayou Chenne Blanc, Old River and the Chinquapin Canal. **Table 6** provides a summary of the geometric data source used for the HEC-RAS cross sections.

Table 6: Summary of Geometric Data Used for High Detail Cross Sections						
HEC-RAS Study Reach (River Code, Reach Code)	Return Interval					
Code, Reach Code)	Cross Section Range	Geometric Data Source				
Amite River upstream of the Comite confluence (AmiteRiver, Abv ComiteR)	455732.8 – 624771.4	Channel: 2018 LA DOTD LiDAR Overbanks: 2018 LA DOTD LiDAR				
(united the state of the state	329636.3 – 452434.7	Channel: 2017/2018 LA DOTD Survey (with bathymetric interpolations made between surveyed cross sections) Overbanks: 2018 LA DOTD LiDAR				
	296046.6 -327917.9	Channel below waterline: 2017 USACE Bathymetric Survey Channel above waterline: 2018 LA DOTD LiDAR Overbanks: 2018 LA DOTD LiDAR				
Amite River downstream of the Comite confluence (AmiteRiver, Blw_ComiteR)	All Cross Sections	Channel below waterline: 2017 USACE Bathymetric Survey Channel above waterline: 2018 LA DOTD LiDAR Overbanks: 2018 LA DOTD LiDAR				
Comite River upstream of the Pretty Creek confluence (ComiteRiver, Abv_PrettyC)	All Cross Sections	Channel: 2018 LA DOTD LiDAR Overbanks: 2018 LA DOTD LiDAR				
Comite River downstream of the Pretty Creek confluence (ComiteRiver, Blw_PrettyC)	153840.6 - 230474.3	Channel: 2018 LA DOTD LiDAR Overbanks: 2018 LA DOTD LiDAR				
(como.mo., <u></u>	87620.9 - 152667.2	Channel: 2017/2018 LA DOTD Survey (with bathymetric interpolations between surveyed cross sections) Overbanks: 2018 LA DOTD LiDAR				
	1188.23 - 87367.09	Channel below waterline: 2017 USACE Bathymetric Survey Channel above waterline: 2018 LA DOTD LiDAR Overbanks: 2018 LA DOTD LiDAR				
Amite River Upstream of the Blind River (AmiteRvrDivCanal, Abv_BlindR and BlindRiver)	All Cross Sections	Channel below waterline: 2017 USACE Bathymetric Survey Channel above waterline: 2018 LA DOTD LiDAR Overbanks: 2018 LA DOTD LiDAR				
Old River, Chinquapin Canal, and Chenne Blanc Bayou (OAR_CC_CBB, Above_BlindR)	All Cross Sections	Channel: 2017/2018 LA DOTD Ground Survey Overbanks: 2018 LA DOTD LiDAR				

Model Parameters

The ARB HEC-RAS model uses a wide array of model parameters including weir coefficients, cross sections roughness coefficients and expansion/contraction coefficients to name a few of the most common. These parameters were generally applied using the guidance provided by HEC-RAS documentation in additional to other technical references. Those parameters that are a little more subjective are further discussed here.

Weir Coefficients for Bridge Decks/Roadway

1D Bridge Deck/Roadways were generally allowed to use the default broad crested weir coefficient of 2.6. However in many situations where road embankments were generally at grade or very low, the HEC-RAS Bridge Modeling Approaches were forced to Energy Only, bypassing the use of the weir equation.

Weir Coefficients for Lateral Structures and Storage Area/2D Area Connections

Weir coefficients for lateral structures were assigned using the guidance provided in the Table 3-1 of the HEC-RAS 2D Modeling User's Manual, Version 5.0, dated February 2016. Values ranged from 0.2 for lateral connections that exhibited no or very small embankment heights between the upstream and downstream connection to 3 for those that exhibited a sharp crest such as a concrete interstate barrier connecting two 2D flow areas.

Weir Coefficient for the Amite River Diversion Weir


The Amite River Diversion Weir within the Dynamic ARB HEC-RAS hydraulic model is illustrated in Figure 23. While the Amite River Diversion Weir is not a common weir type since only very minor head losses are observed at the headwater versus the tailwater, flows do have to pass over the weir to reach the Diversion Canal. Table 3-1 Lateral Weir Coefficients in the HEC-RAS 2D User Manual states that weir coefficients are in the range of 0.5 to 1.0 for a weir that "Does not really act like a weir but water must flow over high ground to get into the 2D flow area" which is similar to what is observed at the Amite River Diversion Weir. To better estimate the weir coefficient, LA DOTD coordinated with the USGS who performed flow gaging upstream and downstream of the weir on June 15, 2018. Flows during the gaging period ranged from 1,860 cfs to 2,150 cfs immediately upstream of the diversion weir on the Amite River which is comparable to the mean flow at USGS streamflow gage 07380120, Amite River at Port Vincent based on a review of daily mean flows. The observed flow data indicated a flow split of approximately 26% downstream of the weir on the Amite River and 74% downstream of the weir on the Amite River Diversion Canal during this time window.

To estimate the weir coefficient using the observed data, the hydrograph from USGS streamflow gage 07380120 was applied to the model at this location and scaled up slightly to match observed flows just upstream of the weir. The model was then run six times with the weir coefficients of 0.2, 0.5, 0.75, 1.0, 1.5, and 2.0. As illustrated in **Figure 24**, a weir coefficient of 0.713 was interpolated to match the observed flow split measured by the USGS.

While the observed data only represented a very limited range which very closely matches the mean annual flow on this section of the Amite River, its magnitude is only a fraction of that estimated to result in flooding of the lower Amite River. However, the weir coefficient observed to best match the observed conditions is based on the best available observed data at the time of this study and is well within the range recommended by the HEC-RAS 2D User Manual. Due to the lack of additional data, the weir is assumed to follow the general hydraulic assumption that weir coefficients are constant.

Figure 23: Amite Diversion Weir geometry, Amite River Lateral Structure146750.0 (right bank of Amite River).

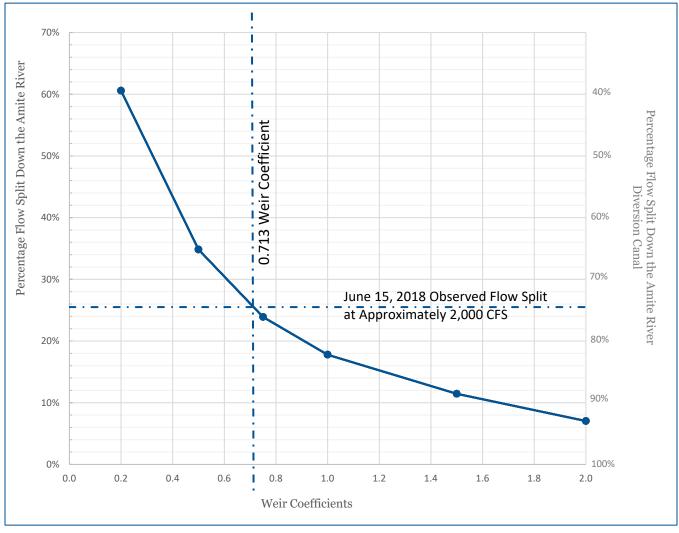


Figure 24: Variations of Weir Coefficients in the ARB HEC-RAS Hydraulic Model at the Amite River Diversion Weir Compared to Observed Flow Split on June 15, 2018 (flow split data collected by USGS).

Manning's Roughness Values for 1D Reaches

Aerial imagery, field reconnaissance and survey photography were all utilized where available to visually evaluate cross sections and assign Manning's N values using guidance provided in Open Channel Hydraulics by V.T. Chow, 1959. Additional refinements were made using engineering judgement to apply a degree of meandering factor as recommended by Cowan (Cowan, 1956). Cowan recommends applying a multiplier of 1, 1.15 or 1.3 for minor, appreciable, and severe meanders respectively. **Figures 25** to **28** illustrate the selection of N values for several cross sections within the Dynamic ARB HEC-RAS model.

Review of historical flow records indicated that travel times through the study reaches varied considerably for different magnitudes of flow, suggesting that Manning's N values were not constant at all flow magnitudes. To account for this, Flow Roughness Factors were used within HEC-RAS. The Flow Roughness Factors option can be found within the Tools menu in the Geometric Data window.

The Flow Roughness Factors option allows the user to adjust roughness coefficients with changes in flow. This feature is very useful for calibrating unsteady flow models with a large range of flows and is further discussed in the Calibration section. Roughness generally decreases with increases in flow and depth and is especially true on large river systems. **Table 7** provides a summary of the basic channel and overbank N values assigned to the 1D cross sections prior to the application of Flow Roughness Factors. These factors were selected generally assuming bank full discharges.

Table 7: Summary of Manning's N Values for 1D Cross Sections					
Location	Left Overbank	Channel	Right Overbank		
Amite River Upstream of the Comite River Confluence	0.09 – 0.12	0.035 - 0.045	0.09 – 0.12		
Amite River Reach Downstream of the Comite River Confluence	0.08 – 0.12	0.028 - 0.045*	0.07 – 0.12		
Comite River Upstream of the Pretty Creek Confluence	0.1 – 0.12	0.045 - 0.06	0.08 0.12		
Comite River Reach Downstream of the Pretty Creek Confluence	0.08 – 0.12	0.035 - 0.055	0.08 – 0.12		
Amite River Diversion Canal	0.08 – 0.12	0.022 - 0.025*	0.08 – 0.12		
Amite River Diversion Canal (Blind River)	0.12	0.022 - 0.024	0.12		
Chenne Blanc Bayou/Chinquapin Canal	0.09 – 0.12	0.028 - 0.045	0.09 -0.12		
Pretty Creek (Medium Detail Study)	0.12	0.05	0.12		

^{*}Values were increased to 0.06 adjacent to the Amite River Diversion weir to accountant for irregular, non-parallel flow patterns that are observed as flow exchanges between the River and Canal.

Figure 25: Amite River, Cross Section 399176.7 (approximately 20 miles upstream of the Comite River Confluence), looking upstream. The basic channel Manning's N value is estimated to be 0.037.

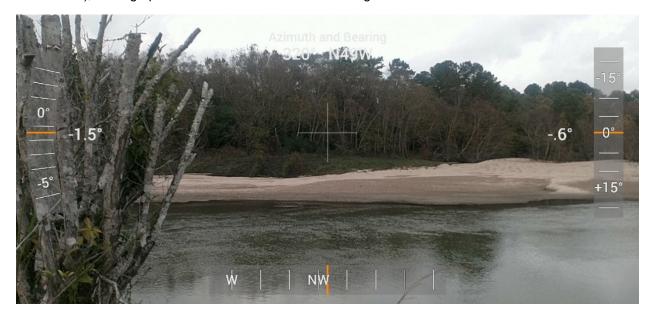



Figure 26: Amite River, Cross section 399176.7 (approximately 20 miles upstream of the Comite River Confluence), looking at right over bank. The basic right overbank Mannings's N value is estimated to be 0.12. Photo: Forte & Tablada, 2018

Figure 27: Chinquapin Canal, Cross Section 16041.2 looking upstream. The channel Manning's N value is estimated to be 0.03.

Photo: Forte & Tablada, 2018

Figure 28: Chinquapin Canal, Cross Section 16041.2 looking at left overbank. The left overbank Manning's N value is estimated to be 0.11.

Photo: Forte & Tablada, 2018

Manning's Roughness Values for 2D Flow Areas

2D flow areas were assigned Manning's N values using the Land Cover to Manning's N function within HEC-RAS 2D Flow Areas. This function allows spatially varied N values to be applied within 2D areas using GIS polygon regions. The 2011 NLCD, the most current at the time of model development was utilized to assign Land Cover to 2D flow areas. As of January 2019, the Multi-Resolution Land Characteristics Consortium indicates that the 2016 NLCD dataset will not be available until sometime in 2019 and therefore was not available for use with the ARBNM Version 1.0. Table 8 provides a summary of the Manning's N values assigned to NLCD land use codes. Since flooding sources studied by 2D methods were only performed in medium detail, the NLCD was not refined to apply separate Manning's N values to channel areas. This would be highly recommended as a model upgrade in the event that the Dynamic ARB HEC-RAS model is to be used for detailed analysis of flood risk and project measures within the medium detail 2D study reaches.

Table 8: Summary of Manning's N Values for 2D Flow Areas						
2011 NLCD Code	Description	Manning's N				
11	Open Water	0.035				
21	Developed, Open Space	0.09				
22	Developed, Low Intensity	0.10				
23	Developed, Medium Intensity	0.10				
24	Developed High Intensity	0.15				
31	Barren Land (Rock/Sand/Clay)	0.10				
41	Deciduous Forest	0.12				
42	Evergreen Forest	0.12				
43	Mixed Forest	0.12				
51	Shrub/Scrub	0.12				
71	Grassland/Herbaceous	0.07				
81	Pasture/Hay	0.09				
82	Cultivated Crops	0.10				
91	Woody Wetlands	0.12				
95	Emergent Herbaceous Wetlands	0.12				

HEC-RAS Model Stability

Model stability is an inherent challenge of dynamic 1D and 2D hydraulic modeling. There is no analytical solution for the Saint Venant equations (two hyperbolic differential equations) which are used to calculate how flow changes in space over time. Consequently, they must be solved by numerical approximation. Model stability refers to whether or not the solution of the numerical approximations of the governing differential equations at each computational time-step is able to converge on a reasonable solution or not. A stable model converges on a solution and completes an entire simulation and an unstable model diverges away from a solution, causing the model to abort or "crash", ending the simulation prematurely. An otherwise stable model can become unstable if the flow regime is changed; a culvert, bridge, or other hydraulic structure (i.e., an internal boundary condition) is added to the system; or the initial conditions are changed to something that is unrealistic to name just a few causes. The larger the model, the greater the challenge to create a stable model.

During the development of the ARB HEC-RAS model, numerous instabilities were encountered. Run time messages were carefully reviewed to identify fatal instabilities (those that result in HEC-RAS aborting), critical stabilities (those that results in erroneous results but allow HEC-RAS to run to completion) and minor instabilities (those that give reasonable results but result in multiple iterations and larger convergence errors which increase program execution or "run" times). All fatal and critical instabilities were eliminated from the runs through a variety of methods while all minor instabilities were carefully reviewed and actions were taken where feasible to reduce instabilities and minimize convergence errors. Fatal and critical instabilities were most often associated with the 1D reaches. 2D areas were most commonly associated with minor instabilities which had the most significant impact on run times. Some of the more common causes of instability for 1D and 2D study areas included:

1D Flow Stability

Free and Submerged Flow Rating Curves at Hydraulic Structures

Due to the large size of many of the bridges along the Amite and Comite rivers, the default Parameters for Hydraulic Properties Table (HTab Param icon within the Bridge Culvert Data editor) often resulted in irregular Free and Submerged Flow Rating Curves that exhibited rapid changes in water surface elevation with minor changes in flow. A Free Flow rating curve describes the flow-elevation relationship when tailwater submergence does not occur such as free flow over a weir. A family of Submerged Flow rating curves is calculated by RAS for a given flow for a range of tailwater conditions. These abnormal rating curves created significant instabilities which often prevented RAS from converging on a solution. Notable differences were observed when comparing Free and Submerged Flow Rating Curves developed within HEC-RAS version 4.1 and 5.0.6 as well as unexplained changes to the rating curves following minor geometry edits.

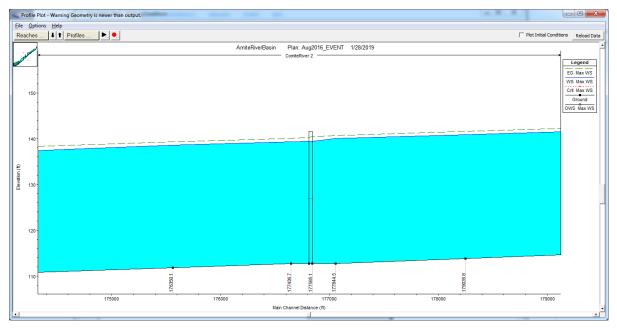
To improve stability, all structure Free and Submerged Flow Rating Curves were carefully reviewed to ensure that the selected curve accurately matches the expected hydraulics through the bridge opening. Where sudden changes in the curves were irregular and unexplainable, the default parameters for the number of points on the free flow curve (50), the number of submerged curves (50) and number of points on each submerged curves (20) were increased up to the maximum allowable. Additionally, where needed, headwater maximum elevations, tailwater maximum elevation and maximum flow values were entered to limit the

.

extent of the curves. The maximum flow and elevation observed during the August 2016 flood was used as a guidance with an appropriate buffer applied. While this resulted in significantly longer Geometry Preprocessor times, it also resulted in smoother curves and reduced Unsteady Flow Simulation run times as a result of improved stability.

All final HTab curves for bridges along the Amite and Comite River main channels have been included in the **Appendix 2** as reference to future users as a direct comparison in the event of instabilities during future simulations.

Bridge Modeling Approaches


Adding to the stability issues associated with Free and Submerged Flow Rating Curves, Bridge Modeling Approaches were a further source of instability. In particular the use of Momentum for low flow methods resulted in questionable results for some bridges. Where visible model instabilities were present, the HEC-RAS Standard Table for Bridge Comparison was reviewed at time steps before, during and after the instability to determine the Bridge Selection Method (BR Sel Method). Often the instabilities occurred when the low flow method switched from Energy to Momentum methods. When reviewing the hydraulic profile through bridge openings, erroneous large drawdowns in both energy grade and hydraulic grade were often observed at internal bridge sections BRU and BRD. When this was observed, the bridge modeling approach was forced to the Energy method for low flows which typically resulted in reasonable results and improved stability.

Multiple Bridge Openings

The Multiple Bridge Opening option was used for many bridges where true multiple openings were present. This did present challenges with stability and resulted in significantly longer Preprocessing of HEC-RAS geometry data but was critical for the accurate and stable modeling of bridges. The best stability and results were obtained by using identical cross sections for sections 2 and 3 of the bridge modeling routine ensuring that the stationing of sections 2, 3 and all internal bridge sections BRU and BRD are identical. This provided a flat bed profile though the bridge as illustrated in Figure 29.

Figure 29: Creating identical inverts and sections at sections 2, BRD, BRU and 3 of the HEC-RAS bridge routine generally resulted in greater stability for both single and multiple bridge openings.

Weir Flow at Bridges

Unexplained issues were accounted at several single opening bridges whereby HEC-RAS did not appear to be allowing weir flow to occur despite both the energy and hydraulic grade lines exceeding the minimum weir flow elevation. The Multiple Bridge Opening routine was used as a workaround by defining the road embankments as conveyance areas which allowed weir flow to occur and provided more realistic results.

Low Flows

Low flows are notoriously challenging to obtain numerical stability within HEC-RAS 1D. Applying Initial Flow values to the Unsteady Flow Data Initial Conditions improved stability at the start of simulations, however, this was often only temporary since the Initial Flow is only used by HEC-RAS to perform a steady state simulation to establish initial elevations at all cross sections. It does not function as a minimum flow. Therefore unless significant flow is applied to the model before the initial conditions drain out of the system, the model will often exhibit poor numerical stability. This is particularly critical during observed simulations which may often result in extended time steps of low or minimal flow to portions of the model. To improve the stability, a minimum flow of 1 cfs per square mi. of drainage area was assigned to every hydrograph boundary applied to the ARB HEC-RAS model Unsteady Flow Data. While the impact of this was negligible during flood flows, it resulted in improved stability at all flow conditions resulting in a more robust model that will present end users with fewer challenges.

Multiple Boundary Conditions at a Single Cross Section adjacent to the Amite River Diversion Weir

While potentially just an irregularity with the unique characteristics of the Amite River Diversion Weir, fatal instabilities were observed at the upstream-most cross section of the Amite River Diversion Canal. At this cross sections there was a boundary condition inflow from Flat Lake within the AmiteR_Div_SW 2D Flow Area in addition to a lateral inflow from the Amite River Diversion Weir. By disconnecting the boundary condition from the 2D Flow Area and allowing this minor flow to pond up and enter the Amite River and Diversion Canal upstream and downstream of the weir resulted in improved stability. Since the inflow from Flat Lake was very small (approximately 50 cfs when gaged during an approximately 2,000 cfs flow along the Amite River) and quickly becomes overwhelmed by unconfined upstream flow break outs from the Amite River, the removal of this connection was considered insignificant. If the model is to be used for low flow studies in this area, it is recommended that the connection be reestablished and additional effort be performed to improve stability.

2D Flow Stability

When compared to the HEC-RAS 1D computation engine, the 2D computation engine resulted in far fewer fatal and critical instabilities when developing and testing the model. Often fatal and critical instabilities reported to be within the 2D engine were not as a direct result of the 2D engine but rather instabilities inherited from coupling with an unstable 1D reach. Minor instabilities, while typically not resulting in erroneous results, did result in slow computation run times as a result of multiple iterations. Wherever feasible, the causes of these instabilities were identified and remedied.

To identify areas of instability the computation run time messages were transferred to Excel and sorted to rank the cells by those with the largest error in addition to summarizing and ranking the individual cells with the most convergence errors reported within the Run Time Messages that are over the default RAS tolerance. Some of the most common causes of large and multiple errors included:

Cell Size Transitions

HEC-RAS allows the utilization of refinement regions that enable users to create regular 2D meshes of differing resolution. While this function saves considerable time creating meshes and allows increased detail in more critical areas, sudden changes in cell size can create computational instability and significantly increase run times. As a general rule of thumb, it was determined that to achieve reasonable stability and run times, adjacent cells should be no more than 0.5 to 2 times the size of adjacent cells. To create more gradual transitions, refinement areas were either strategically delineated to result in gradual transitions or additional break lines were utilized to create a more regular transition as illustrated in **Figure 30**.

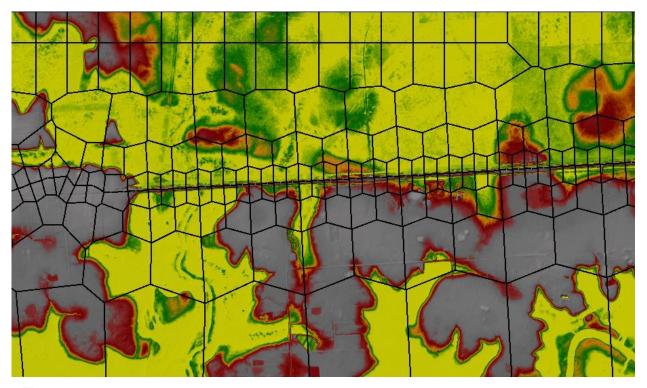


Figure 30: Gradual transition of cell sizes resulted in improved stability.

Multiple Water Surfaces within a Single Cell

Cells that straddle high ground between two independent flood elevations as illustrated in **Figure 31** were a common cause of instability and increased run times. While this is typically only a temporary situation until water elevations rise and the adjacent floods merge, cells that become wetted only during the peak of the flood or during an extended time of stable water elevation did have significant impacts on run times. This was most notable for 2D cells at the edge of the middle and lower Amite River where inundation times were significantly longer than those in more confined areas upstream.

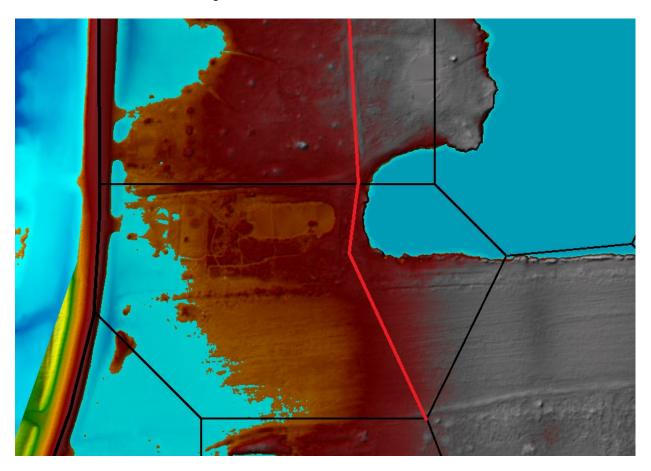
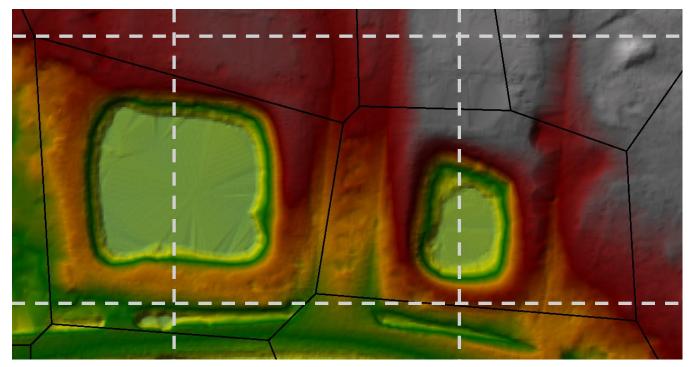



Figure 31: Example of 2D cell with two independent flooding elevations on the east and west edges of the cell which result in instabilities. The use of the red break lines along ridgelines divides these independent flood elevations coming from the east and west and consequently would improve model stability and run times.

This issue was particularly prevalent in areas of multiple small ponds or borrow pits which were generally one to two times the size of 2D cells. Due to the close vicinity of many of these ponds and pits, 2D cells would frequently straddle two depressed areas and therefore cause instabilities. For areas which caused significant instability, the 2D cells were manipulated to ensure that cell faces either encircled these areas or breaklines were used to enforce the high ground around them as illustrated in Figure 32.

Figure 32: Refinement of 2D mesh around ponds and borrow pits similar in size to the 2D mesh resolution resulted in improved stability. (Grey lines represent original mesh, black lines represent refined mesh)

SA/2D Area Connections

Storage Area/2D connections were often a source of instability within 2D Flow Areas when used to model bridges and culverts. As discussed previously, current limitations of HEC-RAS prevent the coding of bridges within SA/2D Connections. Therefore, bridges were modeled either as slots through the weir or as a series of culverts. While weirs provided reasonable stability within 2D Flow Areas, culverts frequently caused instabilities. Many of these issues were likely as a result in the limited detail modeling of channels in medium detail 2D areas which did not include bathymetry. This required culvert inverts to be artificially raised since HEC-RAS does not allow SA/2D Area Connections to have inverts lower than the adjoining 2D cells.

To reduce the instabilities associated with modeling culverts within 2D Flow Areas and improve run times, many bridges were converted from multiple culverts to weir openings as previously highlighted in **Figure 20**. Additionally true culverts coded into 2D Flow Areas which exhibited significant instabilities were also converted to weir openings which approximately replicated the culvert opening. When the ARB HEC-RAS model is needed for more detailed analysis in the 2D Flow Areas, it is recommended that bathymetry be enforced to improve accuracy and model stability at structures enabling them to be modeled more accurately.

Time Slicing

Time slicing within the HEC-RAS Unsteady Computation Options and Tolerances allows the user to set a computational time step for a specific 2D flow area that is a fraction of the overall unsteady flow computation interval. Review of the initial runs in several 2D Flow Areas indicated clearly erroneous velocities, sometimes in excess of 1,000 ft/s. suggesting localized numerical instability. This issue was eliminated through the use of time slices in several 2D Flow Areas allowing the Courant conditions for stability to be met and resulted in reasonable

results. A maximum of six slices was required to achieve this stability, effectively reducing time steps on the fly from 30 seconds to 5 seconds where needed.

Lateral Structures

Lateral structures were a source of instabilities. Selection of weir coefficients as low as 0.2 did result in improved stability, however this often underestimated the exchange of flow between 1D and 2D areas. Often instabilities at lateral structures were inherited from instabilities in the 1D reaches which once resolved resulted in improved stability at the lateral structures.

Cell Size Enforcement around Structures

When a 2D area is created, the automated mesh generation tool in HEC-RAS generally works well. However, cell formation does not account for proper alignment along topographic or hydraulically significant features. If breaklines are not enforced within a 2D area it will not cause instabilities, but if breaklines are not enforced along the boundary of a 2D area where there is flow transfer it will cause computational issues. In Figure 33 below the boundary of the ComiteWest, ClaycutJones, and WardsCreek 2D Flow Area's can be seen. Notice how the cells along the 2D Areas are not collinear meaning that the cells faces do not align properly. In this instance it is not a problem because the 2D areas connect along a ridge where flow does not transfer from one area to another.

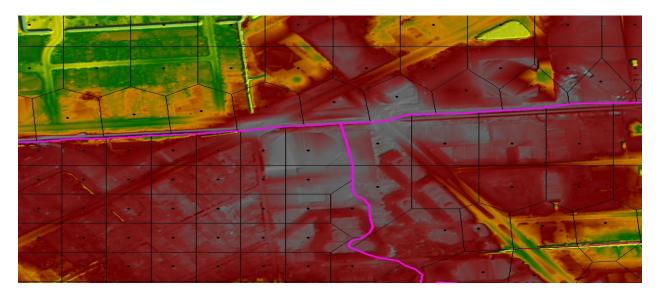


Figure 33: Example of non-optimal cell alignment between 2D Flow Areas where faces are not collinear

In **Figure 34**, the cell faces are aligned more optimally to properly model flow transfers between 2D Flow Areas. Enforcing and aligning the cells along a lateral structure connection of a 1D reach and 2D area can also increase overall model stability.

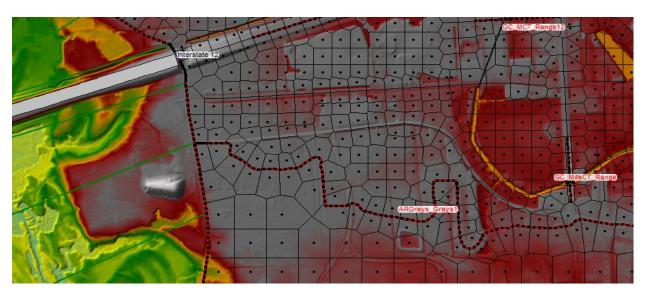


Figure 34: Example of more optimally aligned cell faces between adjacent 2D Flow Areas

Cell Size Selection Immediately Adjacent to SA/2D Connections

Optimal performance and stability was realized when strategically selecting cells sizes at the faces of bridge openings and culverts within SA/2D Connections. Larger 2D cells at the faces of culverts generally resulted in improved stability whereas smaller cells at the opening of weir slots used to simulate bridges openings generally resulted in improved stability when smaller cells sizes were used. This is believed to be as a result of flow going from 1D (culvert) to an individual 2D cell causing instabilities related to volume conservation. One small 2D cell may not have the same volume of a large submerged culvert. So to increase stability around modeled culverts, a larger cell was used to convey the culvert flow upstream to downstream. An example of this can be seen in Figure 35.

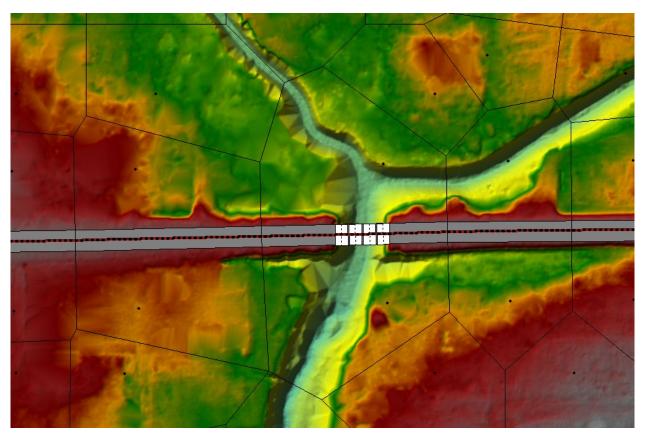


Figure 35: Optimization of Cell Sizes Adjacent to Culverts

Steady State ARB HEC-RAS Hydraulic Models

Version 1.0, February 2019 of the Steady State ARB hydraulic models were developed in HEC-RAS Version 5.0.6. As previously noted the models represent the Amite River and Comite River Tributaries studied in low detail 1D methodologies.

As further illustrated in **Figure 36**, the geometry of the Steady State Amite Tributaries model comprises of:

- More than 1200 1D cross sections within 45 reach segments;
- 68 limited detail hydraulic structures;
- Approximately 140 flow change locations

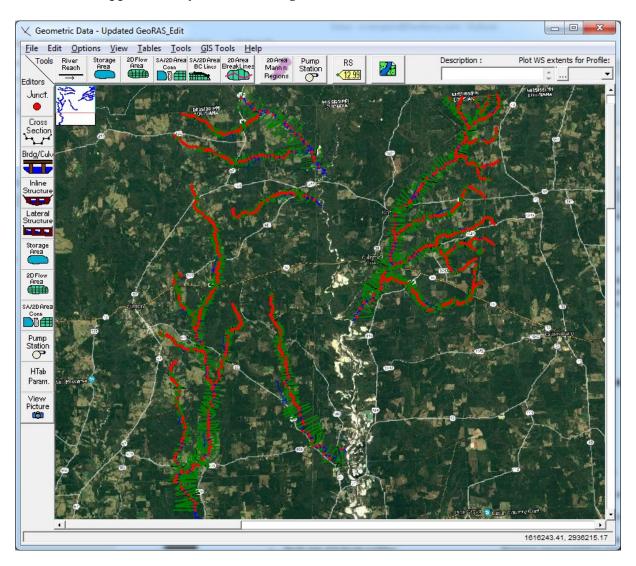


Figure 36: Steady State Amite River Tributaries HEC-RAS Hydraulic Model Geometry Overview

As further illustrated in Figure 37, the geometry of the Steady State Comite Tributaries model comprises of:

- More than 900 1D cross sections within 33 reach segments;
- 77 limited detail hydraulic structures and;
- Approximately 95 flow change locations.

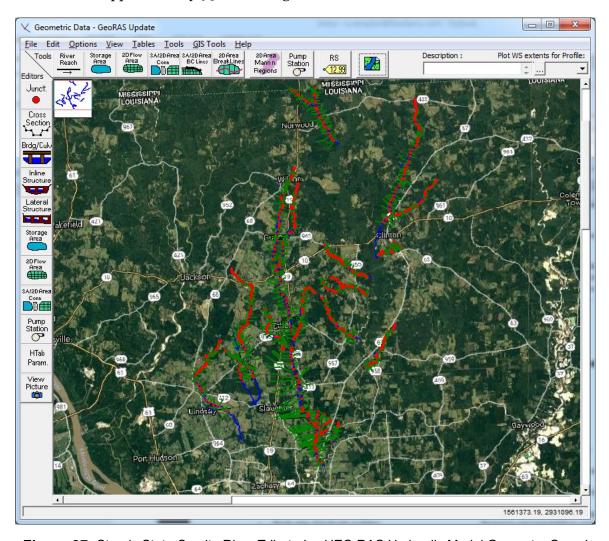


Figure 37: Steady State Comite River Tributaries HEC-RAS Hydraulic Model Geometry Overview

Computation Methods

The steady state ARB HEC-RAS models use the standard step back water method within the Steady State Flow Analysis engine to solve the energy equations. Sub critical flow was assumed for all reaches.

Model Geometry

The ARB steady state HEC-RAS models use the 2018 LA DOTD LiDAR for all cross sections. Due to the scoped low level of detail, no bathymetric assumptions were made for portions of the channel not captured by the LiDAR. Hydraulic structures modeled within these reaches were assumed from LiDAR and or aerial images.

Manning's N values were approximated using the same methodology as medium and high detail study areas, however the Flow Roughness Factors option was not utilized in low detail areas.

Hydrologic Flows

Instantaneous peak flows from the ARB HEC-HMS model were applied to the model through the Steady Flow Data option in HEC-RAS. These flow were validated using the 2001 USGS Publication Methods for estimating Flood Magnitude and Frequency in Rural Areas in Louisiana. Individual flow change locations and magnitudes can be found in the State Flow Analysis option.

CALIBRATION

Six historical floods were selected for calibration of the ARB HEC-HMS and Dynamic ARB HEC-RAS models. These flood events were selected to meet the following criteria to best characterize a range of flows within the entire basin and allow the models to be accurately calibrated:

- Low flow, in-channel discharges to enable calibration of channel celerity through Manning's N values.
- Bank-full and near bank full discharges to enable calibration of bank-full Manning's N values with primary focus on channel celerity and a secondary focus on elevations.
- Minor flood discharges to enable shallow overbank roughness N values to be refined with a focus on both channel celerity, and overbank Manning's N values.
- Major flood discharges to enable calibration of deep overbank flooding Manning's N values.
- Flood of record to simulate the recent 2016 flood with a primary focus on calibration of peak elevations.

Where multiple comparable historical events were observed that met this criteria, preference was given to those events that occurred after the August 2016 storm since notable changes in channel geometry had occurred as a result of scour, erosion, channel migration and sediment deposition. Additionally, high-resolution radar precipitation data and USGS stream gage information is generally more abundant for more recent events.

The National Weather Service (NWS) flood stage categorization at flood forecast locations corresponding to USGS gages included in **Table 9** were used as a guide to assess historical flood magnitudes at the five key stream gages located along the Amite River and Comite River. In general, the term flood stage is defined as the gage height of the lowest bank of the reach in which the gage is situated. The term "lowest bank" is, however, not to be taken to mean an unusually low place or break in the natural bank through which the water inundates an unimportant and small area. The common definition is the stage at which overflow of the natural banks of a stream begins to cause damage in the local area from inundation (flooding).

Table 9: NWS Flood Stage Categorization						
Location	Major Flood Stage	Moderate Flood Stage	Flood Stage	Action Stage		
USGS 07380120 Amite River at Port Vincent, LA	12	10	8	7		
USGS 07377000 Amite River near Darlington, LA	23	21	18	16		
USGS 07378500 Amite River near Denham Springs, LA	39	35	29	26		
USGS 07378000 Comite River near Comite, LA	28	25	20	16		
USGS 07377500 Comite River near Olive Branch, LA	24	22	19	16		

After a careful review of historic floods, six events were selected to meet the criteria. These floods are listed in **Tables 10** and **11** and are annotated with the colors previously defined in **Table 9** to characterize the flood stage.

.

Table 10: USGS	Table 10: USGS Recorded Stage (Cell colors correspond to Table 9 Flood Stage Categorization)							
Event	Description	USGS 07380120 Amite River at Port Vincent, LA (ft.)	USGS 07377000 Amite River near Darlington, LA (ft.)	USGS 07378500 Amite River near Denham Springs, LA (ft.)	USGS 07378000 Comite River near Comite, LA (ft.)	USGS 07377500 Comite River near Olive Branch, LA (ft.)		
June 2018	Low, in-channel discharges	1.84	1.35	15.81	7.92	0.15		
January 2018	Partial bank full discharges	2.92	4.61	20.37	8.03	3.12		
August 2017	Minor flood discharges	4.88	5.58	23.35	10.26	3.88		
October 2017	Minor flood discharges	3.64	13.04	29.03	24.59	19.40		
March 2016	Major Flood	11.20	16.82	36.09	26.18	14.00		
August 2016	Flood of Record	17.90	22.54	46.20	34.22	26.96		

Event	Description	USGS 07380120 Amite River at Port Vincent, LA (CFS)	USGS 07377000 Amite River near Darlington, LA (CFS)	USGS 07378500 Amite River near Denham Springs, LA (CFS)	USGS 07378000 Comite River near Comite, LA (CFS)	USGS 07377500 Comite River near Olive Branch, LA (CFS)
June 2018	Low, in-channel discharges	4,560	978	2,830	2,230	185
January 2018	Partial bank full discharges	7,030	3,330	5,460	2,560	1,190
August 2017	Minor flood discharges	9,430	4,200	7,980	3,220	1,510
October 2017	Minor flood discharges	13,900	15,000	25,100	11,000	30,000
March 2016	Major Flood	41,700	29,800	65,200	12,100	11,100
August 2016	Flood of Record	199,000	116,000	266,000	71,000	78,000

The basic description and calibration method intended for each of the six flood events is summarized in **Table 12**:

Table 12: Se	Table 12: Selected Historical Flood Events					
Event	Date	Description	Description and Calibration Methodology			
1	June 2018	Low, in- channel discharges	Small peak, generally ¼ to ½ bank full. Observed hydrographs from USGS gages were input into HEC-RAS model and flow roughness factors were applied to applicable flow range to calibrate timing of floodwave by matching observed timing at downstream gage.			
2	January 2018	Partial bank full discharges	Small peak, generally about ½ bank full. Observed hydrographs from USGS gages were input into HEC-RAS model and flow roughness factors were applied to applicable flow range (above that of previous event) to calibrate timing of floodwave by matching observed timing at downstream gage.			
3	August 2017	Minor flood discharges	Very minor flood with bank full or near bank full discharges and isolated minor overbank flooding. Full recreation of gridded radar precipitation data was applied to HEC-HMS to generate flows for HEC-RAS. Flow roughness factors were applied to applicable flow range (above that of previous events) to primarily calibrate the timing of the floodwave by matching observed timing at downstream gage. Calibration to observed high water marks was also performed, however this was second priority to timing.			
4	October 2017	Minor Flood discharges	Very minor flood with bank full or near bank full discharges and isolated minor overbank flooding. Full recreation of gridded radar precipitation data was applied to HEC-HMS to generate flows for HEC-RAS. Flow roughness factors were applied to applicable flow range (above that of previous events) to primarily calibrate the timing of the floodwave by matching observed timing at downstream gage. Calibration to observed high water marks was also performed, however this was second priority to timing.			
5	March 2016	Major Flood	Large flood with significant overbank flow generally throughout watershed. Full recreation of gridded radar precipitation data applied to HEC-HMS to generate flows for HEC-RAS. Timing of floodwave and runoff volumes in additional to flood elevations were the focus of calibration.			
6	August 2016	Flood of Record	Very large flood event with major overbank flows generally throughout the watershed. Full recreation of gridded radar precipitation data applied to HEC-HMS to generate flows for HEC-RAS. Calibration of elevations was primary focus.			

Historic Precipitation Reconstruction for Floods

To recreate the four floods within the ARB where HEC-HMS models were developed for calibration, the National Oceanic and Atmospheric Administration (NOAA) Stage IV gridded precipitation data was collected. The data was obtained from the University Corporation for Atmospheric Research data server (https://data.eol.ucar.edu/dataset/113.003).

Stage IV is an hourly quality controlled rainfall product available on a 4 km (2.6 mi.) grid across the United States. The hourly rainfall data was bi-linearly spatially interpolated to a 1 km grid and rounded to the nearest hundredth. In addition, the hourly data was temporally linearly disaggregated to a 15-min. timestep (i.e. hourly precipitation was equally divided into 15-minute bins). All calculations were done using R statistical software (version 3.2.2). The output from R was individual gridded 15-min, asci files, which were then concatenated in a HEC-DSS file using the HEC Asc2dssGRid.exe tool which is a function within HEC-GeoHMS tools. The HEC-DSS file format allowed the precipitation grids to be directly read into HEC-HMS.

The gridded rainfall reconstruction was quality controlled using rain gages from a variety of data sources. The primary sources are listed below, although not all sites had data for each event:

- USGS https://waterdata.usgs.gov/ga/nwis/rt
- NCEI https://www.ncei.noaa.gov/
- Community Collaborative Rain, Hail & Snow Network (CoCoRaHS) www.cocorahs.org
- Weather Underground Personal Weather Stations http://www.wunderground.com
- MesoWest http://mesowest.utah.edu/index.html
- RAWS http://www.raws.dri.edu/index.html
- NADP http://nadp.sws.uiuc.edu/
- HADS https://mesonet.agron.iastate.edu/request/dcp/fe.phtml?network=LA DCP
- Louisiana Agriclimatic Information System (LAIS) http://weather.lsuagcenter.com/

The temporal extent for the rainfall reconstruction was determined using the time series of rainfall and streamflow data within and in close proximity (for rain gages) to the basin. All events exhibited both bank-full discharges and minor flood discharges, which aided calibration and timing/routing of the hydrologic model. Streamflow hydrographs were collected for each event and centered on the peak flow. Paired with rain gage data, this process allowed antecedent rainfall and subsequent rainfall unrelated to the main event to be excluded from the core precipitation period. The pairing of these two datasets also helped capture ongoing flooding relating to runoff from subsequent rainfall over saturated soils. Thus, the core precipitation period of a storm could be extended as necessary. **Table 13** shows the temporal extent of each rainfall event used in the study.

Table 13: Amite Watershed Calibration Events						
Event	Dates					
March 2016	March 10 (1000 CST) – March 12 (2100 CST)					
August 2016	August 10 (1000 CDT) – August 21 (1900 CDT)					
August 2017	August 26 (1600 CDT) – August 31 (2200 CDT)					
October 2017	October 21 (1400 CDT) – October 22 (1300 CDT)					

Quality control of the reconstructed Stage IV precipitation was completed for each event to ensure the gridded data was properly capturing the spatiotemporal patterns of the rainfall. Due to the highly inhomogeneous nature of heavy rainfall, a perfect rainfall reconstruction is impossible. However, with the use of nearby rainfall gages, accuracy can be estimated as to how the gridded precipitation compares to ground observations.

Stage IV accumulations are generally within 25% of independent rainfall gages, but often times are more accurate (within 10%). Daily observational data used in the analyses may be capturing a different time period than the hourly total from the reconstructed Stage IV. These errors are expected to be minimal and would only represent the fractions of rain that fell before or after the core precipitation period. For each analysis, areas of possible underestimations or overestimations by the reconstructed rainfall were circled in red and blue, respectively.

August 2017 Precipitation Event

Rainfall from the August 2017 event was associated with remnants of Hurricane Harvey that notoriously dropped over 40 in. of rain within the Houston Metroplex. As the system moved through the Amite Watershed, the southern portion of the watershed received up to 12 in. of rain. Embedded convection within the storm likely caused some underestimations by the reconstructed Stage IV rainfall as seen in **Figure 38**. However, almost all these underestimations were within the 20% bound (**Figure 39**). Interestingly, all USGS observations were ~10% less than the gridded rainfall. Typically, their gages are mounted to the side of a bridge, so perhaps this caused interference with the tipping bucket. Analysis of wind speeds and USGS gage climatology were outside the focus of this study, but could also help explain the low estimates of the USGS gage totals. A bias correction was applied to the USGS gages (not shown) and storm totals at these gages were moved to within 10% of reconstructed Stage IV precipitation data.

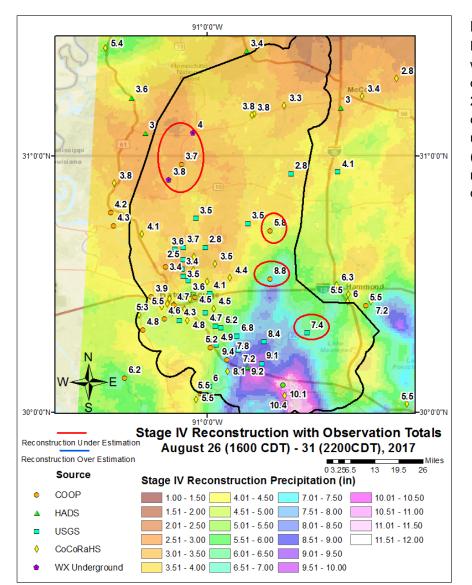
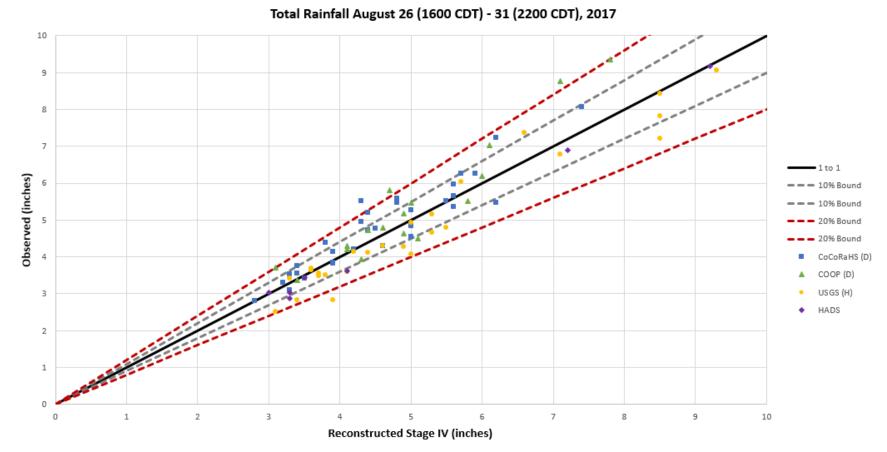
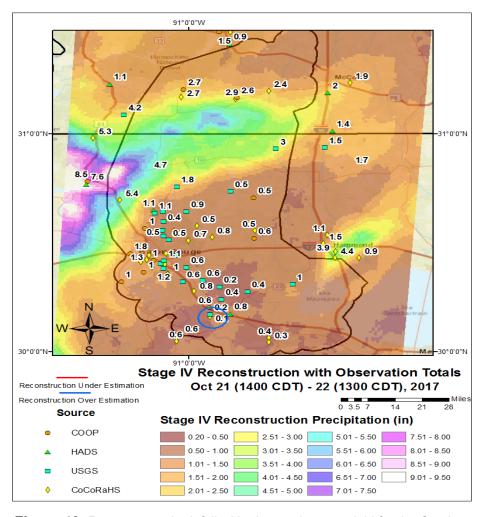


Figure 38:
Reconstructed rainfall

with observations overlaid for the August 2017 event. Areas circled in red (blue) are underestimated (overestimated) by reconstructed Stage IV data.



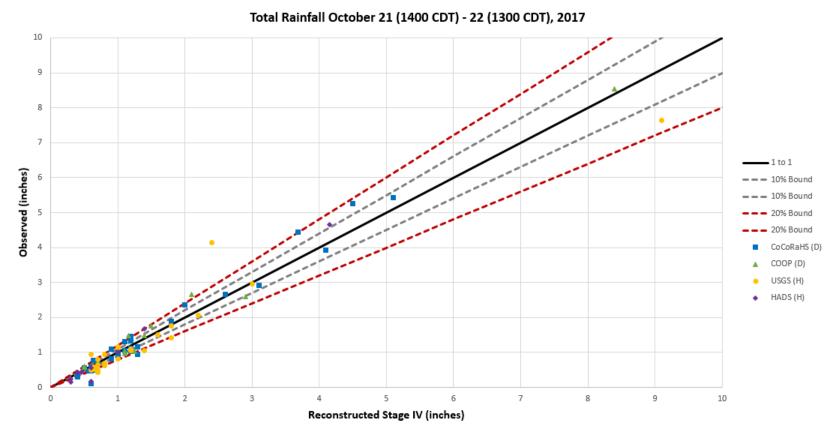

Figure 39: Scatter plot of the reconstructed Stage IV rainfall and observed data with a 10% and 20% error bound.

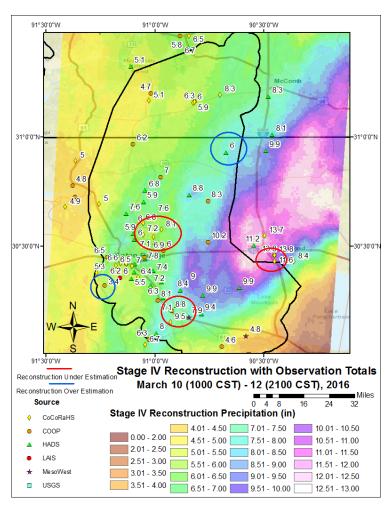
October 2017 Precipitation Event

Heavy rainfall from the October 2017 event was generally limited to the Mississippi and Louisiana border with totals up to 9.5 in. (Figure 40). Unfortunately, this remote area has limited gage data, so the quality control check was limited. Over gaged areas, the reconstruction and observation data were mostly within 10% agreement. Figure 41 once again shows USGS gages being underestimated when compared to the reconstructed precipitation. After another bias correction, the two are within 10% of one another (not shown). Within the domain, the largest difference between the observations and reconstructed rainfall were up to 0.5 in. Thus, the gridded rainfall was deemed reasonable to serve as input into H&H modeling.

Figure 40: Reconstructed rainfall with observations overlaid for the October 2017 event. Areas circled in red (blue) are underestimated (overestimated) by reconstructed Stage IV data.

80

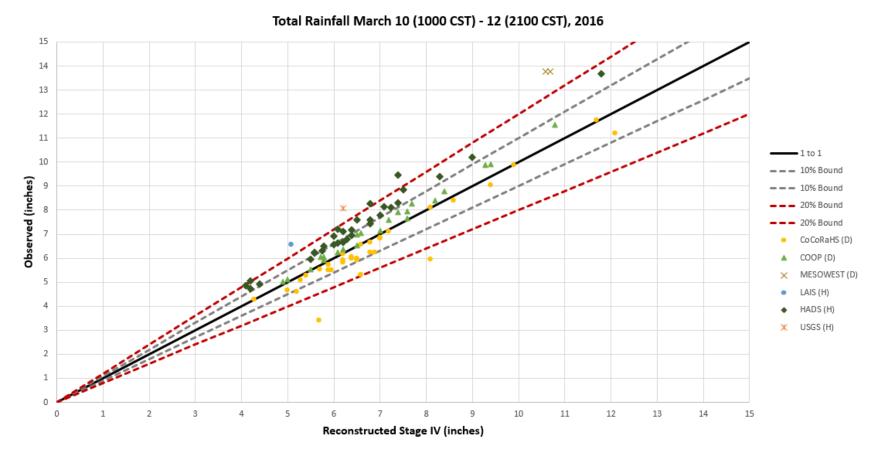


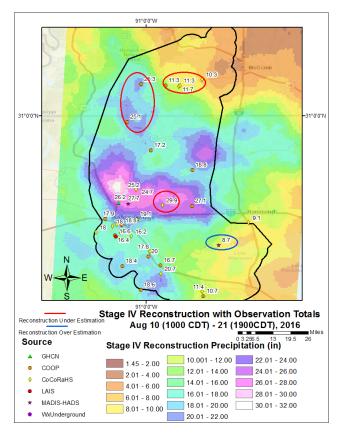

Figure 41: Scatter plot of the reconstructed Stage IV rainfall and observed data with a 10% and 20% error bound.

March 2016 Precipitation Event

Figure 42 and **Figure 43** show the reconstructed Stage IV with observations overlaid and the scatter plot comparing the reconstructed Stage IV totals at the observation gages for the March 2016 event. The 60-hr event is characterized by moderate rainfall over the south, central portion of the domain with storm totals up to 13 in. Underestimations by the reconstructed Stage IV rainfall north of Donaldsville (circled in red) were up to 2 in. However, the area of underestimation was limited in areal extent and therefore did not decrease flows in the area within the hydrology model.

Figure 42: Reconstructed rainfall with observations overlaid for the March 2016 event. Areas circled in red (blue) are underestimated (overestimated) by reconstructed Stage IV data.




Figure 43: Scatter plot of the reconstructed Stage IV rainfall and observed data with a 10% and 20% error bound.

August 2016 Precipitation Event

Figure 44 shows a comparison of the reconstructed and observed data for the August 2016 event, on the interpolated Stage IV 1-km grid. A slow moving Low pressure system paired with high amounts of atmospheric moisture lead to historical flooding in southeast Louisiana. The highest recorded value for the storm was 31.39 in. just outside of Watson, Louisiana. **Figure 45** is a scatter plot comparing Stage IV estimates with observations, along with 10% error bound for reference. All errors were under 20%, and the majority of estimates were within 10% of the gage reading. Furthermore, the final amounts did not conflict with other literature published by the National Weather Service or other reliable media sources. Areas circled in red show possible underestimation by the reconstructed Stage IV data, and areas overestimated by Stage IV are circled in blue. Most of these errors occur in areas of tight precipitation gradients. After comparing to all precipitation gages, total rainfall values were initially deemed reasonable to serve as input into H&H modeling.

Figure 44: Reconstructed rainfall with observations overlaid for the August 2016 event. Areas circled in red (blue) are underestimated (overestimated) by reconstructed Stage IV data.

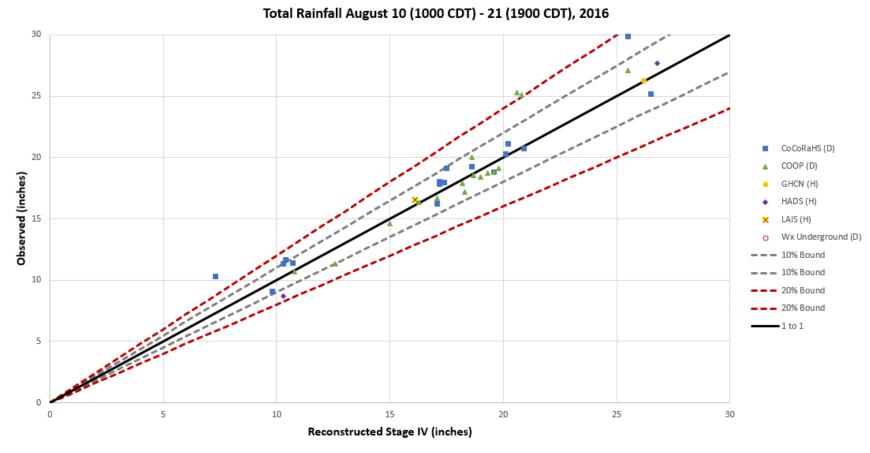


Figure 45: Scatter plot of the reconstructed Stage IV rainfall and observed data with a 10% and 20% error bound.

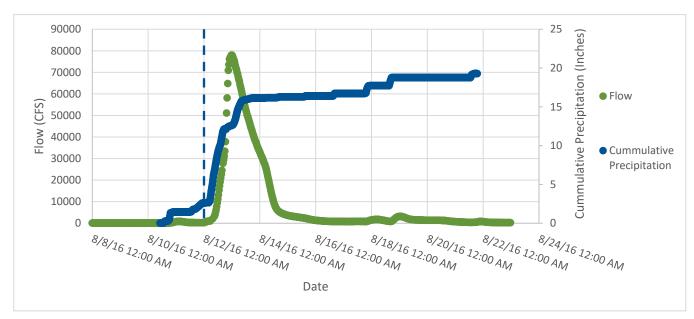
HEC-HMS Calibration

The ARB HEC-HMS model was calibrated using the four precipitation events reconstructed using Stage IV data. The gridded rainfall data was applied to the HEC-HMS model to simulate the observed flood hydrographs which deliver flow inputs to the HEC-RAS hydraulic model. It should be noted that while the ARB HEC-HMS model does contain hydrologic routing reaches, only routed reaches within the state of Mississippi and those in a limited number of reaches leading to the 1D Amite River and Comite River reaches are used by the Dynamic ARB HEC-RAS model.

All hydrologic routing within the Louisiana portions of the Amite River and Comite River are performed using the dynamic HEC-RAS model within both 1D and 2D domains receiving inflows directly from the HEC-HMS subbasin outflows through the connected HEC-DSS database. This allows for more advanced dynamic routing to be performed using the full Saint Venant equation as used for both the 1D and 2D HEC-RAS computation engines. Therefore with the exception of the limited number hydrologic routing reaches within Mississippi, only subbasin losses were calibrated within HEC-HMS. Subbasin transforms were validated through the review of the HEC-RAS results and were demonstrated to provide only minor sensitivity to the flows within the ARBNM.

The sensitivity of the Green & Ampt parameters used in the HEC-HMS model was tested by varying each parameter individually. Initial water content and hydraulic conductivity appeared to be the two most sensitive loss parameters for sub basins and were the primary focus for calibration.

To calibrate the subbasin losses, observed losses were determined for the four precipitation events by estimating the excess precipitation. Excess precipitation was estimated at all locations where USGS streamflow data was available for the precipitation events. This was determined as:


$$\textit{Excess Precipitation (\%)} = \frac{\textit{Hydrograph Volume} - \textit{Baseflow Volume}}{\textit{Basin Averaged Precipitation Volume}}$$

Whereby:

- Hydrograph Volume represented the total volume of water for the flood event observed at the USGS gage (area under hydrograph).
- Baseflow Volume represented the volume of water estimated to be from baseflow (area under linear interpolation of initial and end of storm baseflow hydrograph).
- Basin Averaged Precipitation Volume represented the average precipitation depth upstream of the USGS gage determined from Stage IV data multiplied by the drainage area.

86

Initial water content was estimated by comparing the cumulative basin averaged precipitation with the hydrograph response at USGS Streamflow gages. When a significant hydrograph response was observed, the cumulative precipitation for that instance in time was noted and assumed to be representative of the initial water content as illustrated in **Figure 46**. Basin average initial water contents were applied to the HEC-HMS model for individual storms.

Figure 46: Estimation of initial water content for the August 2016 flood event for the basin upstream of USGS Gage 07377500, Comite River near Olive Branch. At approximately 12:00 AM on August 12th, 2016, the river began to respond after receiving 2.3 in. of cumulative precipitation.

Excess precipitation and initial water content for each of the five USGS streamflow gages locations are summarized in **Tables 14-17** for the four observed precipitation events. It should be noted that during the August 2016 flood, several streamflow gages were unable to report peak discharges due to a number of reasons including damage to gages and backwater influences which invalidated rating curves.

Table 14: August 2017 Precipitation Event Observations						
USGS Gage Location	Observed Hydrograph Volume at Gage (acre.ft.)	Drainage Area at Gage (square mi.)	Average Precipitation Depth Upstream of Gage from Radar Rainfall (in.)	Initial Abstraction Estimated from Hydrograph/Hyet ographs (in.)	Observed Excess Rainfall (observed hydrograph volume/precipitati on volume)	
07377500 Comite River Nr Olive Branch	9,400	145	3.3	1.3	37%	
07378000 Comite River Nr Comite	22,000	284	3.3	0.6	44%	
07377000 Amite River Nr Darlington	27,500	580	3.3	1.3	27%	
07378500 Amite River Nr Denham Springs	78,000	1,280	3.4	1.5	34%	
07380120 Amite River at Port Vincent	98,000	1,596	3.6	1.2	32%	

Table 15: Octobe	Table 15: October 2017 Precipitation Event Observations						
USGS Gage Location	Observed Hydrograph Volume at Gage (acre.ft.)	Drainage Area at Gage (square mi.)	Average Precipitation Depth Upstream of Gage from Radar Rainfall (in.)	Initial Abstraction Estimated from Hydrograph/Hyet ographs (in.)	Observed Excess Rainfall (observed hydrograph volume/precipitat ion volume)		
07377500 Comite River Nr Olive Branch	46,000	145	4.2	1.6	144%		
07378000 Comite River Nr Comite	34,000	284	3.3	0.7	69%		
07377000 Amite River Nr Darlington	33,000	580	2.7	3.3	39%		
07378500 Amite River Nr Denham Springs	98,000	1280	2.5	0.6	57%		
07380120 Amite River at Port Vincent*	79,500	1596	2.2	0.3	42%		

Table 16: March 2016 Precipitation Event Observations						
USGS Gage Location	Observed Hydrograph Volume at Gage (acre.ft.)	Drainage Area at Gage (square mi.)	Average Precipitation Depth Upstream of Gage from Radar Rainfall (in.)	Initial Abstraction Estimated from Hydrograph/Hyeto graphs (in.)	Observed Excess Rainfall (observed hydrograph volume/precipitatio n volume)	
07377500 Comite River Nr Olive Branch	38,000	145	5.9	2.3	84%	
07378000 Comite River Nr Comite	73,000	284	6.1	1.0	79%	
07377000 Amite River Nr Darlington	137500	580	6.1	2.0	73%	
07378500 Amite River Nr Denham Springs	426,000	1280	6.3	2.4	99%	
07380120 Amite River at Port Vincent*	344,000	1596	6.4	1.0	64%	

90 |

Table 17: August	Table 17: August 2016 Precipitation Event Observations							
USGS Gage Location	Observed Hydrograph Volume at Gage (acre.ft.)	Drainage Area at Gage (square mi.)	Average Precipitation Depth Upstream of Gage from Radar Rainfall (in.)	Initial Abstraction Estimated from Hydrograph/Hyeto graphs (in.)	Observed Excess Rainfall (observed hydrograph volume/pre cipitation volume)			
07377500 Comite River Near Olive Branch	191,500	145	19.8	2.3	125%			
07378000 Comite River Near Comite	NA	284	22.4	1.5	NA			
07377000 Amite River Near Darlington	305,500	580	11.5	1.2	86%			
07378500 Amite River Near Denham Springs	107,000	1280	17.0	2.4	92%			
07380120 Amite River at Port Vincent*	NA	1596	17.1	1.1	NA			

Validation of Excess Precipitation Observations

To validate the excess precipitation observations, the data was reviewed and cross-checked to identify and verify potential outliers or potential issues requiring further consideration. **Table 18** summarizes the range of precipitation excess and potential outliers for each of the four precipitation events. As can be seen, three potential outliers have been flagged. These are generally those with hydrograph volumes that approach or exceed the observed precipitation that fell upstream of the gage. In at least two instances, the observed hydrograph volume exceeds the actual precipitation volume that is estimated to have fallen on the basin.

Table 18: Summary of Excess Precipitation								
Precipitation Event	Range of Excess Precipitation	Potential Outliers	Range Excluding Outliers	Average Excess Precipitation Excluding Any Outliers				
August 2017	27% - 44%	None	N/A	35%				
October 2017	39% - 144%	144% (07377500)	39% - 69%	52%				
March 2016	64% - 99%	99% (07378500)	64% - 84%	75%				
August 2016	86% - 125%	125% (07377500)	86% - 92%	89%				

The largest outlier is the 144% excess precipitation estimated at Gage 07377500, Amite River near Olive Branch for the October 2017 flood event. To verify this, the volume at this gage was compared to gage 07378000 Comite River near Comite which indicated a decrease in hydrograph volume from 46,000 acre.ft. at Olive Branch to 34,000 acre.ft. at Comite demonstrating a decrease in the downstream direction. Since there were no major diversions upstream of these gages, this indicated a potential error in either precipitation or stream flow records.

To isolate the potential outlier, the Comite River Near Comite gage was compared to the Amite Near Darlington gage (upstream of the Comite River confluence) and Amite Near Denham Springs gage (downstream of the Comite River confluence) to determine a drainage area weighted comparison between observed hydrograph volumes both upstream and downstream of the Amite River and Comite River confluence as illustrated in **Figure 47**.

This would strongly suggest that the streamflow estimated at 07377500 Comite River near Olive Branch for the October 2017 flood is erroneous and was therefore discounted as an outlier in the calibration. The hydrograph shape however was utilized for calibration of hydrograph timing. Since other potential outliers were not so extreme, the source of potential error could not so easily be isolated.

٠

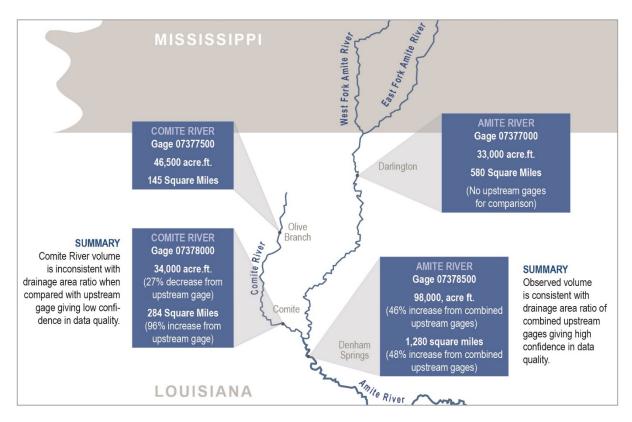


Figure 47: Validation of Gages for October 2017 Event

Initial HEC-HMS runs generally indicated that all four precipitation events underestimated the rainfall totals required to generate observed flood volumes at USGS gages.

Upon closer look, over the Comite at Olive Branch, rainfall was underestimated by 17 to 19% when compared to the NWS Cooperative Observer Program (COOP) stations at Norwood and Gloster. Precipitation was increased over this area using a mask approach. First, storm centers were identified and isohyets were drawn appropriately. Then, storm total rainfall was increased by using multiple factors for each of the isohyet areas. The factor was applied uniformly across time as to not alter the temporal distribution of the storm, but only the magnitude. Adjusted storm totals at the COOP stations after applying the mask were then within 1% of the observations.

Looking upstream, there were also extreme underestimations in streamflow over the Darlington sub-basin implying rainfall was also underestimated by the Stage IV data over this sub-basin. Over the southern portion of the basin, there were two CoCoRaHS stations and one COOP station that indicated a strong rainfall gradient. The COOP station (orange circle in the middle mask Figure 48) indicated the reconstructed Stage IV data was overestimating rainfall by 12%, whereas the CoCoRaHS stations (yellow diamonds in the middle mask Figure 48) indicated the reconstructed Stage IV data was underestimating rainfall by 9-11%. The distance from the COOP station to the CoCoRaHS stations was only about 4 mi., which is why it is believed a strong rainfall gradient was present. The northern most CoCoRaHS station (yellow diamond in the northern mask, Figure 48), also suggests rainfall was underestimated upstream

of Darlington. The difference between the reconstructed Stage IV data and CoCoRaHS observation further north was 29%.

Rather than apply one mask over the entire northern area, two masks were created in hopes to smooth the strong rainfall gradient and account for the different magnitudes of underestimation. Starting with the central mask, it was important to make sure a realistic gradient between the other two areas was achieved as well as staying within the 10% rainfall error bound. After applying the mask, the adjusted storm totals at the two CoCoRaHS stations stayed within the 10% error bounds; however, the adjusted storm total at the COOP station did not. The adjusted storm total at the COOP station was 15.5 in., which is 4.2 in. higher than the observation or a 37% overestimation. Several interactions of the mask were completed to try to reduce the error, but none properly captured the necessary rainfall gradient and produced the observed streamflows. Subjectively, the mask used was the best compromise although there was the possibility of some overestimation of rainfall near the COOP station. The area of error should be small enough to not affect the basin-wide rainfall. Over the larger, northern mask, the adjusted storm totals at the CoCoRaHS station were within 0.7 in. of the observation, which reduced the error from 29% to 7%. Unfortunately, no other observations were available, so this mask and subsequent increase in rainfall are assumptions for the ARB upstream of Darlington.

One source of potential error was identified to be from the NRCS SSURGO data whereby soils were observed to change suddenly from Clay Loam in Louisiana to more pervious Silt Loam in Mississippi at the state line. Since it was unreasonable for soils to change at state lines and all indications were that runoff volumes were being underestimated by either the Green Ampt methodology or as a result of rainfall underestimation, it was assumed that the Mississippi Silt Loam was the same soil type as the less pervious Clay Loam in Louisiana, consequently reducing the soil conductivity. Additionally, to more closely replicated observe flood volumes, soil conductivity values were reduced globally to more reasonably match observed runoff volumes for all four calibration events. Care was taken to avoid over forcing parameters given the uncertainty of observed data and methodologies.

94 |

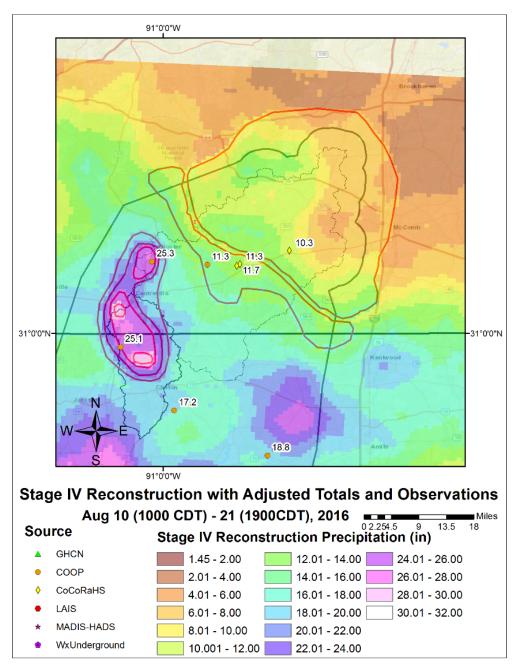


Figure 48: Adjusted reconstructed rainfall with observations and mask overlaid for the August 2016 event. Three sets of masks were created for the event as observations of rainfall and streamflow (Comite at Olive Branch and Darlington) indicated underestimations in the reconstructed rainfall.

HEC-RAS CALIBRATION

The ARB HEC-RAS model was calibrated using the four precipitation events reconstructed using Stage IV rainfall data in addition to the January 2018 and June 2018 observed hydrographs for small in channel flows. As previously noted, the dynamic HEC-RAS model within both 1D and 2D domains receives inflows directly from the HEC-HMS subbasin outflows through the connected HEC-DSS database allowing the flows to be routed using the full Saint Venant equation rather than the simplified HEC-HMS hydrologic routing methods.

The process of hydraulic calibration was performed incrementally beginning with the smaller floods and building up to the larger floods. Initially hydrograph timing was the primary focus for smaller events including those in channel events, however as the magnitude of events increased, an incrementally greater focus was given to the peak discharges and flood elevations.

When calibrating flood elevations, the modeled profile within HEC-RAS was carefully reviewed to make a visual determination as to whether normal flow was occurring. Where normal flow was observed, Manning's N values were adjusted to reasonably recreate observed elevations. Where backwater impacts were observed from hydraulic structures including

bridges, culverts and weirs, the associated parameters including bridge modeling approaches and weir coefficients were adjusted to better calibrate to observed elevations.

Use of HEC-RAS Flow Roughness Factors in the ARB HEC-RAS Model 1D Reaches

The timing of hydrographs at USGS gages throughout the basin were reviewed for a range of historic flow events to determine the flood wave travel time between gages. This indicated that the flood wave travel time varied considerably for different events suggesting that a single Manning's N value would be inappropriate to recreate a range of flood magnitudes. To further validate this theory, steady state simulations were performed using the ARB HEC-RAS model for observed instantaneous peak flows. Manning's N values were adjusted to match observed stages for several historic flow events. When performing these simulations, it was observed that Manning's N values varied considerably and generally

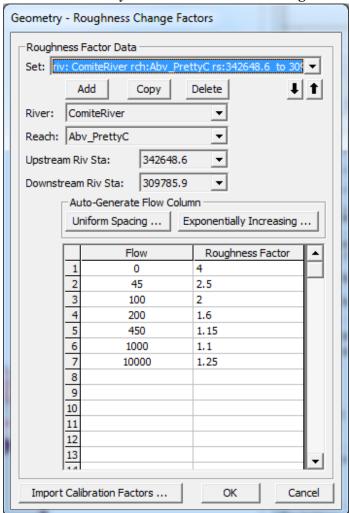
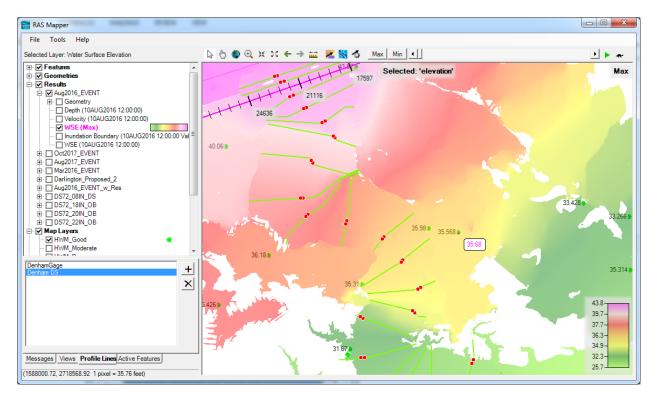


Figure 49: HEC-RAS Flow Roughness Factors Option

decreased with increasing flows. To account for these observations, the HEC-RAS Flow Roughness Factors option was utilized for all reaches along the Amite River and Comite River within the dynamic model. The HEC-RAS Flow Roughness Factors option allows users to apply a multiplication factor to the assigned N values corresponding to flow thresholds as illustrated in Figure 49.

Low Flow Calibration for January 2018 and June 2018 Flow Events


Low flow calibration using the January 2018 and June 2018 flow events was performed on the Amite River and Comite River simply by applying observed hydrographs individually at cross sections that corresponded to USGS gage locations. The flood wave was then tracked downstream to the next USGS gage where the arrival and peak timing of the flood wave was compared to observed data. For low flows, the flood wave was generally observed to arrive early on initial runs. Therefore flow roughness factors greater than 1 were applied to the range of flows being simulated and the simulation was rerun until a reasonable agreement of flood wave timing was observed. Calibration of the January 2018 event, which was generally less than a half bank full event typically required flow roughness factors in the range of 2 to 4 to achieve a reasonable match. Flow roughness factors rapidly decreased as the flows approached bank full where a factor close to 1 was typically appropriate.

Calibration of the August 2017, October 2017, March 2016 and August 2016 Flood Events

The calibrated HEC-HMS flows for the August 2017, October 2017, March 2016 and August 2016 floods were used to incrementally calibrate the HEC-RAS models. The August 2017 and October 2017 floods generally represented near bank full flows with some shallow flooding in the overbanks. These were used to calibrate the in channel N values while also adjusting Flow Roughness Factors to obtain better timing of the flood hydrographs and better match peak discharges. The March 2016 and August 2016 floods represented large and major floods respectively. While some adjustments were made to Flow Roughness Factors, a primary focus was on calibrating to the observed HWMs previously documented. RAS Mapper was utilized extensively to compare results to the HWMs as illustrated in Figure 50 for the August 2016 flood event. It should be noted that generally only minor changes to N values were required during these high events which can be attributed to the detailed calibration of N values during smaller events. Often discrepancies in elevations were attributed to model geometry requiring refinements to 2D Flow Areas generally to allow flow through embankments which would pond up flows.

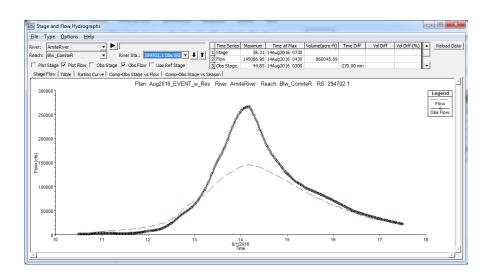


Figure 50: HWMs were added to RAS Mapper and labeled to enable a rapid assessment of the accuracy of the HEC-RAS model by simply activating the Water Surface Elevation Grid (WSE) and hovering the cursor over the observed HWM.

It should be noted that when the HEC-RAS Plot Stage and Hydrograph function is used to compare observed and modeled flows, the observed flow represents the full flow reported at the USGS gage, however the modeled flow reported only represents the portion of the location modeled in 1D. **Figure 51** would initially appear that the model underestimates the observed flow by approximately 45% at the USGS gage near Denham Springs for the August 2016 flood since overbank flow modeled in 2D is not reported. In these situations where modeled flows are represented by both 1D and 2D methods, RAS Mapper should be used to draw Profile Lines which can be used to plot Flow Time Series across both 1D and 2D reaches as illustrated in **Figure 52**. This indicated that the modeled flow is actually within 9% of the observed peak and well within the expected uncertainty of the flow reported by the USGS gage given the unconfined nature of the overbank flooding.

98 |

Figure 51: The HEC-RAS Plot Stage and Flow Hydrographs function can be misleading when comparing observed and modeled hydrographs in areas of coupled 1D and 2D modeling since it does not account for 2D overbank flows as demonstrated here for the Amite River Near Denham Springs where flows are under estimated by only reporting flows contained within the 1D portion of the floodplain.

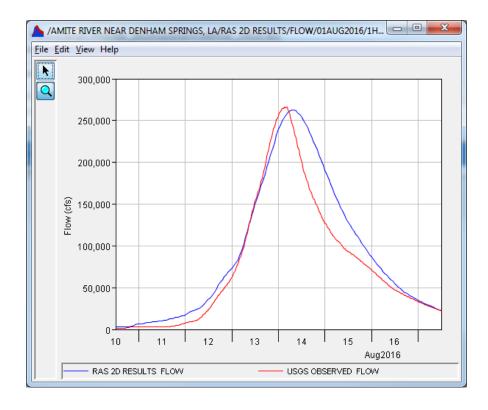


Figure 52: By utilizing the Plot Flow Time Series function for Profile Lines drawn across both the 1D and 2D regions of a model will provide a comprehensive insight into the observed hydrograph where both 1D and 2D modeling methods are used as demonstrated here for the Amite River Near Denham Springs, more accurately representing the floodplain than the method demonstrated in Figure 51.

DESIGN FLOOD SIMULATIONS

The design flood plans within the ARBNM are intended to provide users with an array of options to simulate the 20%, 10%, 4%, 2%, 1%, 0.2% and 1%+ Annual Exceedance Probability (AEP) floods (also referred to as the 5-, 10-, 25-, 50-, 100-, 500- and 100+-year flood respectively). Due to the large size of the ARB and the highly irregular nature of precipitation events, it would be impossible to simulate a flood event with a single meteorological storm that would generate a consistent AEP flood throughout the basin. As is demonstrated during the observed August 2016 flood, the AEP of the peak flood discharge varied significantly along the Amite River. At Darlington the peak was estimated to be approximately a 1% AEP flood, and at Denham Springs, the peak discharge exceeded the 0.2% AEP flood (as will be further demonstrated in **Table 23**). However upstream on the East Fork of the Amite River near Peoria, MS, the August 2016 flood did not even register as the largest peak of that water year.

A design storm approach was developed that can be used for multiple storm centers selected by the user within the ARB. It should be noted that there are many factors associated with a precipitation event and resultant flood that impact the AEP of the flood including the basin antecedent moisture conditions, storm duration, storm intensity, storm center, storm track and current streamflow conditions. Therefore, the AEP of a precipitation event rarely equals the same AEP of the resultant flood event, and storms have the ability to generate floods of both more and less frequent AEPs.

The development of the design storm plans within the ARBNM involved four key steps:

- Flood frequency analysis at all suitable USGS stream gages to estimate AEP magnitude
- Development and selection of design storm spatial distribution, temporal distribution, and magnitude
- Simulation of design storms with multiple centers and precipitation depths to make recommendations on which storms to use to generate a specific AEP flood
- Development of a suite of design boundary Conditions

Flood Frequency Analysis

To estimate the peak magnitude of an AEP flood at key locations within the watershed, a flood frequency analysis was performed on all of the USGS gages reporting annual peak streamflow measurements with at least 15 years of record. To advise users of the potential uncertainty in estimates, the 90% confidence interval was calculated for both the upper and lower bounds of the estimate. The potential range of uncertainty of an AEP estimate at the 90% confidence level generally decreases when a larger period of record is available while similarly the range of uncertainty will be smaller for more frequent AEP floods.

There are over 33 active USGS stream gage sites in the ARB although many of these report only stage and not flow. Of these 33 gages, 22 are located upstream of the Amite River Diversion Canal and only 7 had at least 15 years of streamflow. Of those, five of the seven had flow estimates for the 2016 flood. Five gages from the adjacent Tangipahoa and Tickfaw watersheds were added to the analysis to ensure the results were consistent throughout the

٠

region and help validate areas within the upper ARB that do not have adequate gaging. Figure 53 demonstrates the location of the gages analyzed within the ARB and Table 19 provides a summary of the data available at these gages.

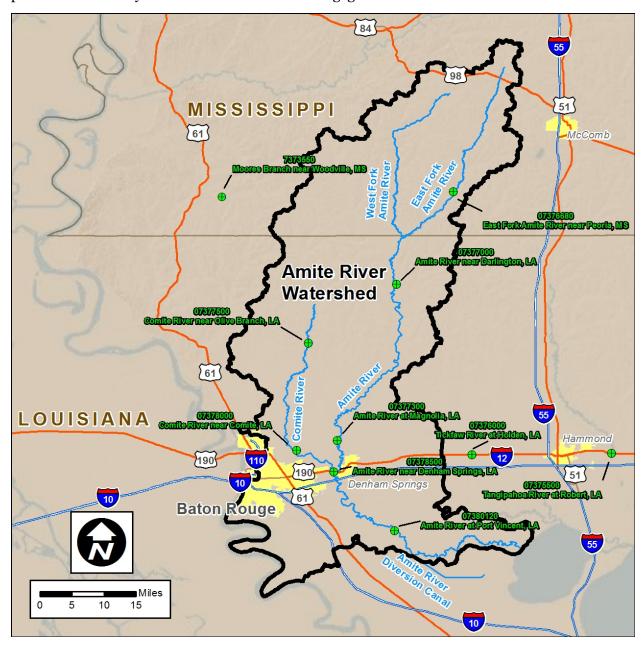


Figure 53: USGS streamflow gages used in the Flood Frequency Analysis

Table 19: Summ	nary of Stream Gages used	within the Anal	ysis			
USGS Station	Gage Name	Drainage Area (sq mi)	# of Records	Period of Record	2016 Flow Estimate	Watershed
07373550	Moores Branch nr Woodville, MS	0.21	62	1955-2017	Yes	Tangipahoa
07375500	Tangipahoa River at Roberts	646	79	1939-2017	Yes	Tangipahoa
07376000	Tickfaw R at Holden, LA	247	77	1941-2017	Yes	Tickfaw
07376679	East Amite R nr Peoria, MS	179	21	1990-2016	Yes	Amite
07377000	Amite R nr Darlington, LA	580	69	1949-2017	Yes	Amite
07377300	Amite R at Magnolia, LA	884	58	1949-2017	Yes	Amite
07377500	Comite R nr Olive Br, LA	145	75	1943-2017	Yes	Amite
07378000	Comite R nr Comite, LA	284	73	1944-2016	Yes	Amite
07378500	Amite R nr Denham Springs, LA	1,280	80	1921-2017	Yes	Amite
07380120	Amite R at Port Vincent, LA	1,596	33	1985-2017	Yes	Amite

Methodology and Software

The flood frequency analysis is based on the methodologies documented in Bulletin 17C, Guidelines for Determining Flood Flow Frequency, 2018. Bulletin 17C revises the procedures of Bulletin 17B, 1982. The most significant differences between the two methodologies are how historical events are treated and the addition of the Multiple Grubbs—Beck method of identifying outliers. A historical event is an event that precedes a gap in the annual peak data series that is larger than any flood event that occurred during the gap. Historical events are identified in the USGS data sets with the code '7' following the historical flow. If there is no code '7' after the last flow prior to the gap, it means that it is unknown whether larger events occurred during the gap. Data with gaps and historical events are now analyzed differently under the 17C guidance. The hydrologist must provide a Perception Threshold and a range of possible values for the missing years. It is typically assumed that the Perception Threshold is the value of the historical event. This assumes that had a larger event occurred, witnesses would have recorded the incident and noted that it was greater than the historical event. If the gap is not proceeded by a historical event, the Perception Threshold is set relatively low and the upper bound of the range is infinity.

Prior to the adoption of Bulletin 17C, the USGS PeakFQ or HEC-SSP software only provided the Single Grubbs-Beck test where multiple low outliers could potentially adversely affect the accuracy of the frequency curve for larger events.

To validate HEC-SSP and the new Bulletin 17C methodology, tests were performed to compare the Peak FQ, and HEC-SSP results using the Bulletin 17B methods while also comparing the HEC-SSP Bulletin 17B results with the HEC-SSP Bulletin 17C results for the 1% annual chance flood at seven USGS stream gages. As can be seen in **Table 20**, all three approaches provided very similar results and consequently did not highlight any reasonable concerns with using HEC-SSP or the Bulletin 17C methodologies.

Table 20: Comparison of Software and Statistical Methodologies for the 1% AEP Estimates (through 2017)					
Location	PeakFQ 17B	HEC-SSP 17B	HEC-SSP 17C		
07377500 Comite R nr Olive Br, LA	46,710	42,887	47,651		
07376679 East Amite R nr Peoria, MS	35,270	34,566	38,404		
07377000 Amite R nr Darlington, LA	111,900	111,661	117,083		
07378500 Amite R nr Denham Springs, LA	148,300	148,268	150,376		
07380120 Amite R at Port Vincent, LA (1985-2017)	135,800	141,042	135,814		
07377300 Amite River at Magnolia, LA	117,200	125,606	126,449		
07378000 Comite River Near Comite, LA (1944-2016)	45,360	45,277	44,224		

Number of Outliers

The results of the flood frequency analysis were observed to be sensitive to the number of observations that are considered as outliers when using the Bulletin 17C methodology. Adding or subtracting one event can potentially have significant impacts on the estimates. For example, USGS gage 07377500 Comite River near Olive Branch, has 74 years of record. In 1980, the peak flow of 2,560 cfs was flagged with a code 'D', "Base Discharge changed during this year". If the 'D' is not removed, the program designates 28 peaks as outliers and estimates the 1% AEP flow as 42,990 cfs. If the 'D' is removed, the program designates none of the peaks as Low Outliers and estimates the 1% AEP flow as 47,230 cfs, an approximately 10% increase. Another example is for the record from USGS gage 07377000 Amite River near Darlington. When excluding the August 2016 record, HEC-SSP designates 18 of the 67 peaks as low outliers. When including the August 2016 record, it does not identify a single low outlier. Table 21 summarizes the number of outliers identified using Bulletin 17B and Bulletin 17C methodologies when including and excluding the August 2016 flood.

Table 21: Low Outliers Detected by Software and Method Including and Excluding the August 2016 Flood						
Location	PeakF	PeakFQ 17B		SP 17B	HEC-SSP 17C	
	Inc. 2016	Exc. 2016	Inc. 2016	Exc. 2016	Inc. 2016	Exc. 2016
07377500 Comite R nr Olive Br, LA	30	31	32	31	0	28
07376679 East Amite R nr Peoria, MS	2	5	4	0	4	2
07377000 Amite R nr Darlington, LA	0	18	20	18	0	0
07378500 Amite R nr Denham Springs, LA	0	0	17	0	0	17
07380120 Amite R at Port Vincent, LA	0	0	0	0	0	0

Table 22 demonstrates the sensitivity of including and excluding the August 2016 flood on the 1% AEP flow estimates for various USGS gages. As can be seen, the resultant increase of including the August 2016 flood ranges from insignificant, to large. To better determine the appropriateness of including or excluding the August 2016 flood, an analysis was performed to determine the estimated AEP magnitude of the event and make a determination of whether it was representative of the AEP of floods that would be used for future analysis or whether it represented an event too extreme that its results would be of little interest to end users.

Table 22: Sensitivity of the inclusion and estimates	exclusion (of the August 201	6 flood on the 1%	∕₀ AEP flow
Stream Gage	Drainage Area (sq	Bulletin 17C 1 Estima	Percent Increase in 1% AEP flow when	
	mi)	Inc. 2016	Exc. 2016	Including August 2016.
07377500 Comite R nr Olive Br, LA	145	47,650	33,090	56
07376679 East Amite R nr Peoria, MS	179	38,404	35,928	4
07378000 Comite R nr Comite, LA	284	44,224	36,665	21
07377000 Amite R nr Darlington, LA	580	117,083	103,426	13
07377300 Amite R nr Magnolia, LA	884	126,285	90,311	40
07378500 Amite R nr Denham Springs, LA	1,280	150,376	122,492	23
07380120 Amite R at Port Vincent, LA	1,596	135,814	138,087	-2

Estimated Frequency of the August 2016 Flood

Using the results of the Bulletin 17C analysis, the peak streamflow recorded at each USGS streamflow gage included in the analysis were reviewed to interpolate the estimated flood frequency of the August 2016 flood event on both the Amite and Comite Rivers.

As summarized in **Table 23**, the AEP of the August 2016 flood was estimated to range from a < 0.2% (ie more extreme than a 0.2% AEP (500-year) flood event) to approximately a 1% AEP when either including or excluding the event in the statistical analysis. The most significant impact of including or excluding the August 2016 event was the increase in the 0.2% AEP for several gages which can be attributed to the increased uncertainty when performing estimates for extreme events. While the August event resulted in extensive damages and is considered a major flooding event, the magnitude is not excessively extreme. Therefore it was concluded that the August 2016 flood was appropriate to include in the analysis.

Table 23: Estimated Frequency Range of the August 2016 Flood					
Location	Bulletin 17C AEP Peak Streamflow Estimates (cfs)				
	Observed Peak Streamflow (cfs)	Estimated AEP Range			
	(013)	Inc. 2016	Exc. 2016		
07377500 Comite R nr Olive Br, LA	78,000	<0.2%	<0.2%		
07376679 East Amite R nr Peoria, MS	Unavailable, August storm was not the largest event	Unavailable	Unavailable		
*07378000 Comite R nr Comite, LA	71,000	<0.2%	<0.2%		
07377000 Amite R nr Darlington, LA	116,000	1%	1% – 0.5%		
*07377300 Amite R nr Magnolia, LA	202,000	<0.2%	<0.2%		
07378500 Amite R nr Denham Springs, LA	266,000	<0.2%	<0.2%		
07380120 Amite R at Port Vincent, LA	199,000	1% - 0.2%	< 0.2%		

^{*} Flow was not included for the August 2016 flood since no estimate was available.

Summary of Flood Frequency Estimates

Table 24 summarizes the peak flow estimates at the USGS gages analyzed for all AEP events when including the August 2016 record in the Bulletin 17C analysis. Full results of the HEC-SSP Bulletin 17C analysis including input data and confidence limit outputs are included in **Appendix 3**.

Location	Bulletin 17C AEP Peak Streamflow Estimates Including the August 2016 Record (cfs)							
	20%	10%	4%	2%	1%	0.2%	1%+ (90% Confidence)	
07377500 Comite R nr Olive Br, LA	14,900	21,100	30,400	38,600	47,700	73,000	67,400	
07376679 East Amite R nr Peoria, MS	16,800	21,600	28,100	33,100	38,400	51,500	57,900	
07378000 Comite R nr Comite, LA	20,400	26,000	33,300	38,800	44,200	57,000	55,600	
07377000 Amite R Darlington, LA	39,300	54,800	77,400	96,400	117,100	172,100	164,200	
07377300 Amite R nr Magnolia, LA	46,000	61,200	84,200	104,000	126,400	190,100	184,000	
07378500 Amite R nr Denham Springs, LA	57,000	76,800	104,400	126,800	150,400	210,500	193,000	
07380120 Amite R at Port Vincent, LA	44,900	60,900	86,100	109,000	135,800	217,400	239,100	

Figures 54 and **55** illustrate the 1% AEP estimates including the upper and lower bounds of the 90% confidence interval (including the August 2016 flood) with respect to drainage area on the Amite and Comite Rivers. As can be seen, the range of the 90% confidence interval and resultant uncertainty in the estimate is significantly larger for gages with limited years of records such as the Amite River at Port Vincent with 33 years of record used when compared to the adjacent gage Amite River at Denham Springs with 80 years of record.

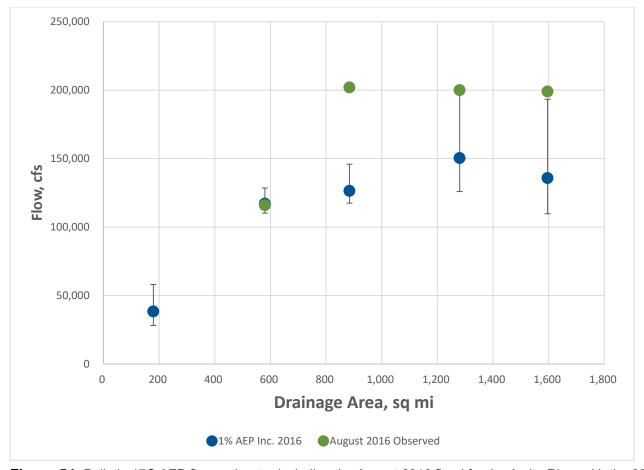
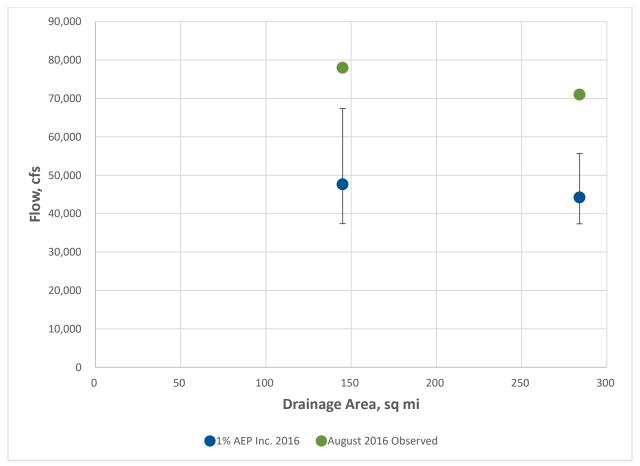



Figure 54: Bulletin 17C AEP flow estimates including the August 2016 flood for the Amite River with the 90% confidence limits illustrated.

Figure 55: Bulletin 17C AEP flow estimates including the August 2016 flood for the Comite River with the 90% confidence limits illustrated.

Development of Design Storm Spatial and Temporal Distributions and Magnitude

The procedures of NOAA Hydrometeorological Report Number 52 (HMR 52) were used to guide the development of a design storm for the ARBNM that could be scaled and centered anywhere within the ARB and beyond. Review of major floods within the ARB including the March 2016 and August 2016 flood events indicated that storm durations causing major flooding were generally in the range of 48 hrs to 72 hrs. For purposes of developing a design storm, a 72 hr duration storm was assumed.

To provide an efficient platform for future analysis and refinement of the ARBNM, HEC-MetVue was utilized to apply the HMR52 procedures. HEC-MetVue is an interactive precipitation visual and analysis tool created by the HEC. This program allows the user to refine, translate, rotate, scale and animate storms over their basin of interest. The model also adheres to accepted NWS and World Meteorology Organization (WMO) standards which simplifies the process for the end user and will provide a long term solution for analysis of the ARB.

Design Storm Spatial Distribution

For the spatial distribution of the design storm, storm-area size, orientation and spatial variability were optimized using HEC-MetVue to produce maximum precipitation over the basin using HMR 52 guidelines. The isohyetal shape for the basin centroid was represented by elliptical isohyets drawn at the standard HMR area sizes as illustrated in **Figure 56**. The orientation for the storm was optimized by HEC-MetVue, and no storm was oriented by more than 40 degrees from the preferred orientation presented in HMR 52. The standard ratio of the major axis to minor axis recommended by HMR52 is 2.5 to 1. To validate this assumption, the axis ratio was compared to the observed March 2016 and August 2016 storms which each demonstrated a comparable ratio of approximately 2 to 1 as illustrated in Figure 57.

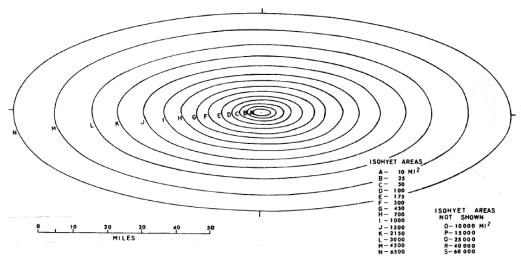
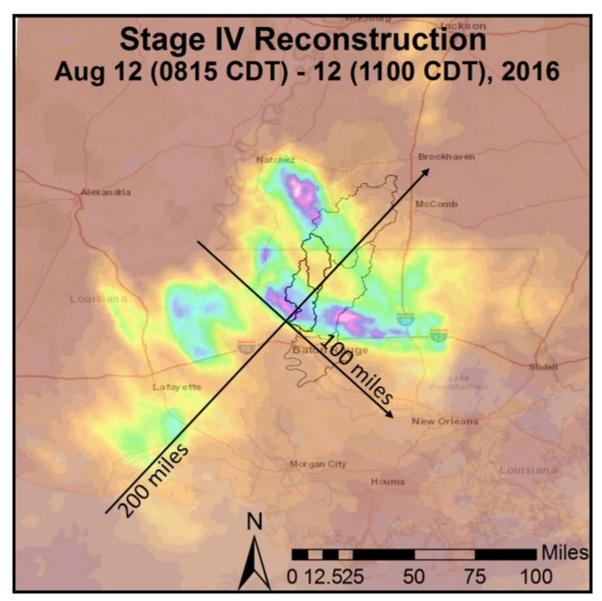



Figure 56: The design storm at each storm center is represented by elliptical isohyets with a ratio of the major axis to the minor axis of 2.5 to 1 using the HMR 52 Standard Isohyetal Pattern. Source: HMR52 Probable Maximum Storm (Eastern United States) User's Manual. March 1984, Updated April 1987

Figure 57: The axis ratios for the August 2016 and March 2016 events were approximated to validate the HMR 52 assumption of 2.5:1. Both the March and August 2016 events demonstrated approximately a 2:1 ratio as illustrated here for the August 2016 event.

Design Storm Temporal Distribution

Analysis of rainfall accumulation during the August 2016 flood event and subsequent streamflow aided in the guidance of choosing an appropriate temporal pattern. The standard HMR 52 6-hr distribution for each hyetograph was used for the temporal distribution. The factors governing the temporal distribution of the design storm included using a 72-hr duration, making sure four of the 6-hr periods with the greatest precipitation occurred after the first 24-hr and 6-hr increments were arranged such that the increments decreased progressively on either side of the greatest 6-hour increment as illustrated in **Figure 58**. The 6-hr increments were reduced to 1-hr intervals using the standard 4 periods, and the ratio of the 1-hr to 6-hr precipitation at the storm-center was used to properly adjust ratios for each isohyet within the storm-area size. **Figure 59** shows the fraction of rainfall accumulation over time for the standard HMR distribution used in the analyses. Overlaid is the August 2016 event 72-hr maximum accumulation, which shows the assumptions of the HMR 52 temporal distribution to be of comparable rainfall intensity.

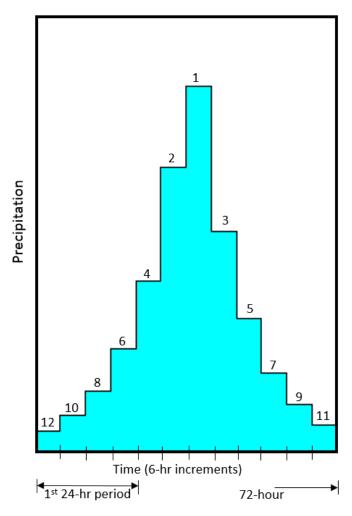



Figure 58: HMR 52 Temporal Distribution

Figure 59: The HMR 52 temporal distribution accumulation was compared to the August 2016 storm accumulations to validate the assumption.

This design storm was then transposed to different locations over the ARB, which allowed the design storm storm-area size and spatial variability to remain constant.

Design Storm Centers and Magnitudes

Three storm centers were created for the ARBNM which were optimized to enable a range of AEP floods to be simulated throughout the basin. The storm center locations selected were the USGS Olive Branch gage on the Comite River which represented a central location within the Comite basin, the USGS Darlington gage on the Amite River which represented a central location for the ARB upstream of the Comite River confluence, and the USGS Denham Springs gage on the Amite River which represented a central location for the area of greatest flood risk, just downstream of the confluence with the Comite River.

As previously discussed, due to the size of the ARB, it cannot be assumed that a single storm will produce a consistent AEP flood, therefore it was determined that modeling different rainfall depths would be a better process to provide users with the tools to successfully simulate a range of AEP at different locations throughout the basin. Guidance would then be provided to users to help select an appropriate storm center and depth based on location within the basin. Rainfall depths of 8-, 10-, 12-, 14-, 16-, 18-, 20-, 22-, 24- and 26-in. were selected for analysis. Since the default PMP rainfall depth generated by HEC-MetVue using the HMR 52 procedures was much larger than the selected precipitation depths, the individual hyetographs were reduced by the ratio of the selected rainfall depths (at the centroid) to the PMP value (at the centroid) for each simulated storm. This was done by taking the mean areal average of precipitation for the HMS subbasin that the PMP was centered on. **Figures 60-62** illustrate the three centers and spatial distribution of the design storm provided within the ARBNM.

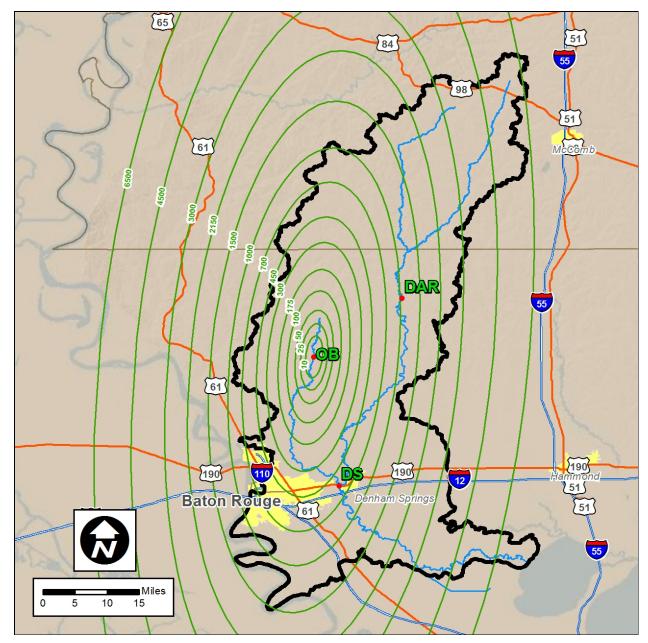


Figure 60: Design storm centered over the Comite River near Olive Branch Gage (OB).

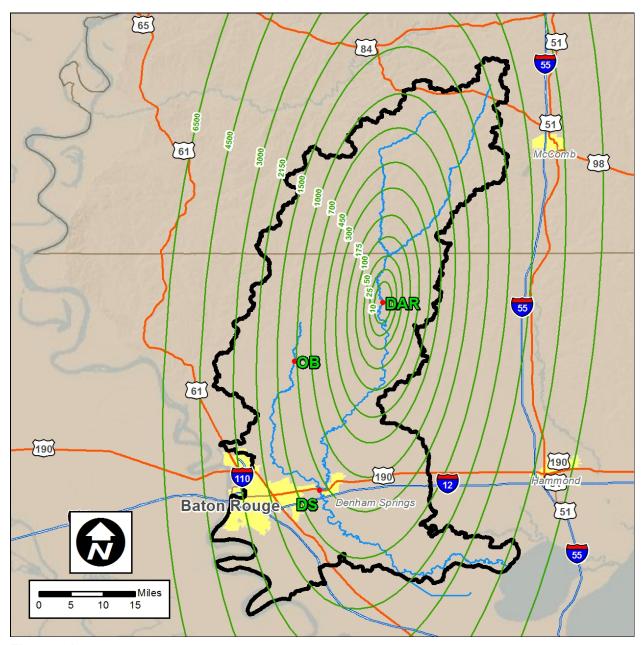


Figure 61: Design storm centered over the Amite River near Darlington Gage (DAR).

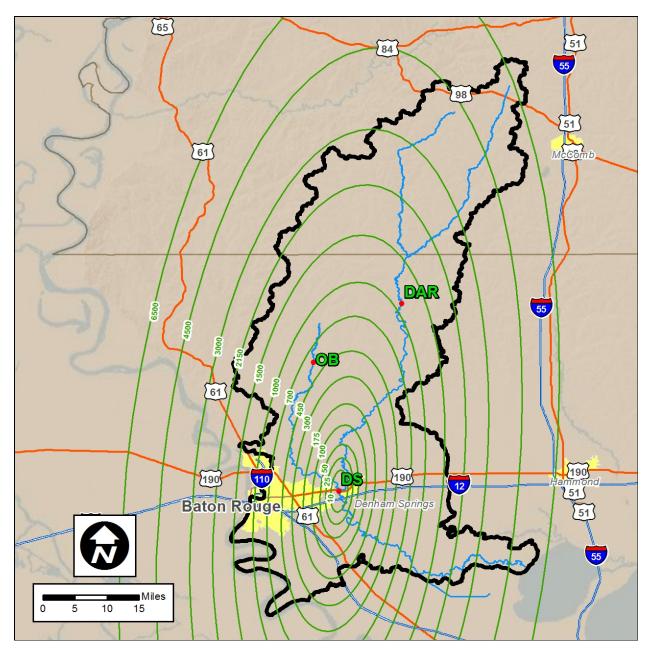


Figure 62: Design storm centered over the Amite River near Denham Springs Gage (DS).

Results of Design Storm Simulations

A total of 30 HEC-HMS and HEC-RAS model runs representing the ten rainfall depths and three centers were performed. The HEC-RAS routed flows extracted from RAS Mapper using profile lines at a selection of locations within the ARB can be seen in **Tables 25-27** for each storm center with corresponding AEP or range **Figures 63–68**. Note that the 1% AEP can be achieved with different rainfall depths depending on the storm center. For example, at Denham Springs an approximately 1% AEP flow will result if the storm is centered directly over it with a rainfall depth of 22 in. However, if the storm is centered over Darlington, then it only takes an 18 in. rainfall depth to achieve nearly the same flow. It should be noted that due to the unconfined nature of floodplains in many regions of the ARB, the alignment of profile lines is very subjective. The profile lines were carefully chosen to best match the observed flows reported by the USGS during the August 2016 flood.

Cumulative				Peal	k Discharg	je (cfs) l	Estimate /	AEP or r	ange			
Rainfall Depth (in.)	Com	7500 ite Nr Branch	Com	'8000 ite Nr mite	07377 Amite Darlin	e Nr	07377 Amite Magr	e Nr	07378 Amite Denh Sprir	Nr am	07380 Amite a Vinc	at Port
8	11,010	>20%	20,080	20%	25,970	>20%	38,010	>20%	52,630	20%	41,560	20%
10	13,890	20%	25,430	10%	36,860	20%	49,170	20%	68,480	20%- 10%	55,580	10%
12	17,470	20%- 10%	30,720	10%- 4%	47,910	20%- 10%	61,520	10%	84,360	10%- 4%	69,500	10%- 4%
14	22,180	10%	35,540	4%-2%	58,560	10%	74,240	10%- 4%	100,170	4%	82,580	4%
16	26,880	10%- 4%	40,810	2%-1%	69,620	10%- 4%	87,120	4%	117,210	4%- 2%	97,100	4%- 2%
18	32,110	4%-2%	45,810	1%	80,460	4%- 2%	99,400	2%	134,500	2%- 1%	111,500	2%
20	37,950	2%	50,000	1%- 0.2%	91,150	2%	111,930	2%- 1%	153,540	1%	124,420	2%- 1%
22	43,400	2%-1%	54,520	0.2%	101,910	2%- 1%	124,040	1%	174,690	1%- 0.2%	140,650	1%
24	48,020	1%	58,460	0.2%	112,920	1%	135,620	1%- 0.2%	194,000	0.2%	157,360	1%- 0.2%
26	52,230	1%- 0.2%	62,200	<0.2%	123,540	1%- 0.2%	148,390	1%- 0.2%	212,740	0.2%	170,240	1%- 0.2%

116 |

Table 26: Peak Design Flood Streamflow Estimates for Darlington (DAR) Storm Center with Estimated AEP or AEP Range Cumulative Peak Discharge (cfs) Rainfall Depth (in.) 07380120 07377500 07378000 07377000 07377300 07378500 Comite Nr Comite Nr Amite Nr Amite Nr Amite Nr Amite at Port Olive Branch Comite Darlington Magnolia Denham Vincent **Springs** 8 8,310 >20% 15,150 >20% 40,550 20% 49,750 20% 57,440 20% 46,450 20% 10 11,120 >20% 19,380 20% 55,670 10% 66,310 10% 77,030 10% 62,800 10% 12 14,250 20% 24,140 20%-70,750 4% 83,470 4% 97,740 10%-77,720 10%-10% 4% 4% 20%-10% 85,370 4%-94,020 14 18,130 27,940 4%-2% 99,550 2% 116,640 4%-10% 2% 2% 16 22,250 10% 31,810 4% 99,730 2% 114,730 2%-135,770 2%-110,370 2% 1% 1% 18 26,320 10%-35,830 4%-2% 114,17 1% 129,550 1% 155,420 1% 124,680 2%-1% 4% 20 30,910 4% 40,500 2%-1% 127,05 1%-144,990 1%-175,420 1%-142,340 1% 0.2% 0.2% 0.2% 159,430 22 35,790 4%-2% 44,630 1% 142,41 1%-159,600 1%-195,130 1%-1%-0 0.2% 0.2% 0.2% 0.2% 39,600 2% 47,110 1%-154,43 1%-171,040 0.2% 209,750 169,760 1%-24 0.2% 0.2% 0.2% 0.2% 26 44,210 1% 50,820 1%-170,45 0.2% 187,200 0.2% 232,310 < 0.2 180,550 1%-0.2% % 0.2%

Table 27: Peak Design Flood Streamflow Estimates for Denham Springs (DS) Storm Center with Estimated **AEP or AEP Range** Cumulative Peak Discharge (cfs) Rainfall 07378000 07380120 Amite 07377500 07377000 07377300 07378500 Depth (in.) Comite Nr Comite Nr Amite Nr Amite Nr Amite Nr at Port Vincent Olive Branch Comite Darlington Magnolia Denham **Springs** 8 7.230 >20% 15.120 >20% 16.440 >20% 31.640 >20% 43.470 >20% 35.480 >20% 10 9.340 >20% 19.190 20% 23,590 >20% 42,440 20% 57,390 20% 47,240 20% 12 11,810 >20% 23,570 20%-32.040 >20% 52,440 20%-70.910 10% 59.880 10% 10% 10% 14 14,460 20% 27,500 10% 39,340 20% 62,150 10% 83,930 10%-71,760 10%-4% 4% 17,620 20%-31,280 4% 48,370 20%-73,040 10%-97,710 4% 83,080 16 4% 10% 10% 4% 18 20,910 10% 35,170 4%-2% 56,300 10% 84,520 4% 111,030 4%-96,200 4%-2% 2% 10%-2% 64,970 10%-126,040 2% 109,070 20 24,120 39,830 95,390 4%-2% 4% 4% 2% 22 10%-73.410 4% 140.280 120.100 27.870 42.530 1% 105.850 2% 2%-2%-1% 4% 1% 24 31,800 4% 46,420 1% 81,590 4%-2% 117,470 2%-157,090 1% 133,060 1% 1% 26 36.000 2% 50.110 1% 89.840 2% 128.160 174,100 146.230 1% 1%-1%-0.2% 0.2%

The Darlington location appears to be the most sensitive location as far as temporal rainfall distribution goes and this is likely because it is the most upstream location modeled. The Olive Branch location displays similar sensitivity although it is muted a bit since it is closer in proximity to the Darlington gage and the watershed will still receive a significant amount of rainfall from the Darlington centered location. The Denham Springs location appears to be almost equally affected by a storm centered over the upstream reaches of the Amite River or Comite River watersheds which shows the significance of how timing can affect a flooding event.

Figure 63: Design Storm Flows for the Comite River near Olive Branch with Multiple Storm Centers

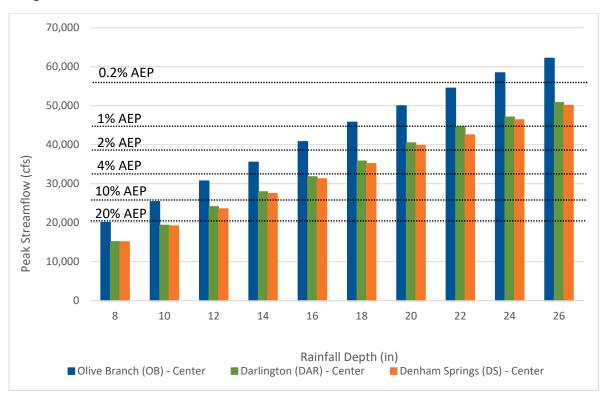


Figure 64: Design Storm Flows for the Comite River near Comite with Multiple Storm Centers

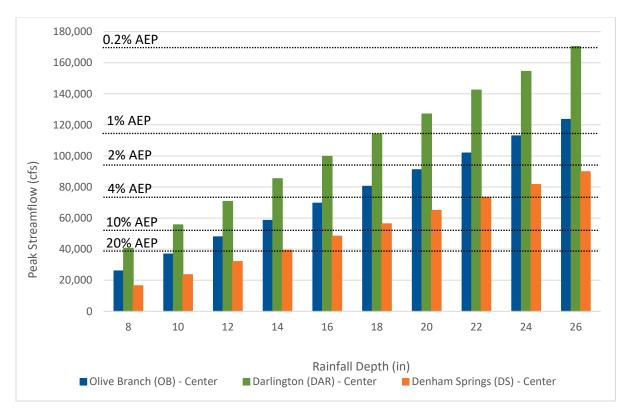


Figure 65: Design Storm Flows on the Amite River at Darlington with Multiple Storm Centers

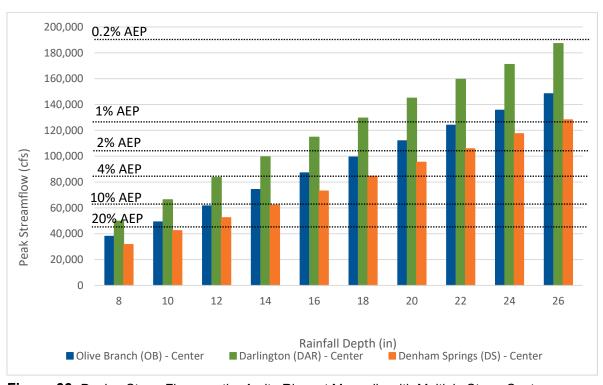


Figure 66: Design Storm Flows on the Amite River at Magnolia with Multiple Storm Centers

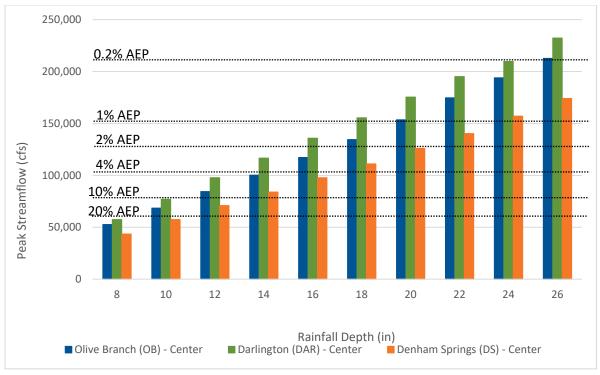


Figure 67: Design Storm Flows on the Amite River at Denham Springs with Multiple Storm Centers

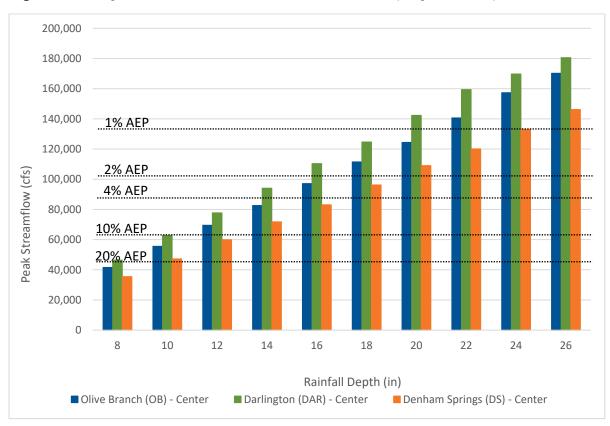


Figure 68: Design Storm Flows on the Amite River at Port Vincent with Multiple Storm Centers

Boundary Conditions

One of the hydraulic model inputs that can influence simulation results significantly is the choice of boundary conditions that are used. The term "boundary conditions" refers to the behavior that is prescribed by the user to define what is to occur at the edges or boundaries of the area to be modeled (i.e., the model domain) throughout the model simulation; boundary conditions can include, depending on what model is used, water levels, water velocities and direction, flows, and wind speed and direction. While simulations of historic floods are relatively simple since observed boundary conditions can be used, the combined probability of coastal and riverine flooding requires careful selection of appropriate boundaries when developing design boundary conditions.

The boundary conditions that are applicable for the HEC-RAS modeling of the Amite River system are flows and water surface elevations. At the upstream end of the ARB model domain, the boundary conditions used are flow hydrographs produced by the HEC-HMS hydrologic model. A water surface elevation hydrograph boundary condition is appropriate at the downstream end of the ARB model domain due to the backwater effects caused by Lake Maurepas. The lake is also influenced by diurnal tidal fluctuations and experiences periodic water surface elevation changes due to its connection with the Gulf of Mexico, through the Lake Pontchartrain basin estuary.

The purpose of this section is to give the users a suite of boundary conditions with supporting research to make an informed decision on which conditions to use. Note that the project management team will need to decide which (if any) of the conditions presented herein is applicable for their application of the model. For example, using a downstream boundary condition water surface elevation hydrograph for a specific historical event might be preferred over any of those presented herein. **Appendix 4** presents more details of the analysis and research contained within this section including sources of data that might be used to obtain data for other boundary conditions.

After analysis of historical data from the USACE, USGS, and NOAA, water surface elevation boundary conditions were developed for the downstream end of the Amite River where it meets Lake Maurepas for the following conditions:

- Average or "typical" conditions,
- Wind and storm surge influenced conditions,
- "Typical" flood conditions, and
- Period of record peak flood conditions.

Tabular data for each of these four conditions are presented in the following sections as well as in the digital project delivery in Excel format to simplify the application of this data for future users.

Average or "Typical" Conditions

Daily and hourly stage data from the USACE's Pass Manchac near Pontchatoula station were used to develop the "typical" or average downstream boundary condition for the Amite River Basin hydraulic model. Daily values were used to determine the long-term average water surface elevation and hourly data were used to develop the average diurnal tidal pattern in Lake Maurepas. The boundary conditions for average conditions for a 72-hr period are given in Table 28 and can be copied and duplicated as necessary to fill out the desired simulation period in the HEC-RAS flow file.

Table 28: Average or "typic hydrograph.	Table 28: Average or "typical" conditions downstream boundary condition water surface elevation hydrograph.					
Hour	Date / Time	Elevation (ft, NAVD 88)				
0	1/1/18 12:00	0.83				
1	1/1/18 13:00	0.81				
2	1/1/18 14:00	0.79				
3	1/1/18 15:00	0.76				
4	1/1/18 16:00	0.73				
5	1/1/18 17:00	0.70				
6	1/1/18 18:00	0.67				
7	1/1/18 19:00	0.64				
8	1/1/18 20:00	0.62				
9	1/1/18 21:00	0.61				
10	1/1/18 22:00	0.61				
11	1/1/18 23:00	0.61				
12	1/2/18 0:00	0.63				
13	1/2/18 1:00	0.65				
14	1/2/18 2:00	0.67				
15	1/2/18 3:00	0.70				
16	1/2/18 4:00	0.73				
17	1/2/18 5:00	0.76				

Table 28: Average or "typical" conditions downstream boundary condition water surface elevation hydrograph. Hour Date / Time Elevation (ft, NAVD 88) 0.79 18 1/2/18 6:00 19 1/2/18 7:00 0.81 20 1/2/18 8:00 0.83 21 1/2/18 9:00 0.85 22 1/2/18 10:00 0.85 23 1/2/18 11:00 0.85

Wind and Storm Surge Influenced Conditions

The 10 largest daily average wind speeds recorded at the New Orleans Airport (NOAA station USW00012916) from January 1984 through June 2018 are presented in **Table 29**. The top nine recorded values occurred during tropical storms that developed in August through October during the peak of the northern Atlantic Hurricane season. The average wind speed during Hurricane Isaac is the largest on record and resulted in a powerful storm surge that resulted in the water surface elevation of record in Lake Maurepas. However, wind speed alone is not the only factor contributing to high water surface elevations in Lake Maurepas. Other factors such as storm intensity, forward speed, size, and angle of approach to the coast can affect storm surge intensity and drive the water surface elevation. This is evident by the fact that similar wind speeds resulted in substantially different water surface elevations in Lake Maurepas during other events.

124 |

Table 29: Ave	rage Daily Wind Speed vs.	Measured Lake Maurepas water	surface elevation.
Date	Storm Name	USW00012916 Average Daily Wind Speed (mph)	Pass Manchac 10-day Maximum water surface elevation (ft., NAVD88)
8/29/2012	Hurricane Isaac	35.34	6.54
9/1/2008	Hurricane Gustav	29.53	NR
9/27/1998	Hurricane Georges	26.40	2.86
8/26/1992	Hurricane Andrew	25.50	2.81
9/24/2005	Hurricane Katrina	24.38	NA
9/12/2008	Hurricane Ike	24.38	NA
10/27/1985	Hurricane Juan	24.16	4.91
9/25/2002	Hurricane Isidore	22.82	4.45
9/15/2004	Hurricane Ivan	22.59	2.82
3/13/1993	1993 Storm of Century	22.15	1.22

One possible alternative for developing a boundary condition from these data is to use the statistics from the 10-day maximum water surface elevation values to generate an average scenario. Using this approach, the wind-induced water elevation stage boundary condition would be equal to a constant 3.66 ft., NAVD88 water elevation boundary condition.

"Typical" Flood Conditions

The 15 largest discharge measurements from 1985-2018 at the USGS Amite River at Port Vincent (07380120) gage are listed in **Table 30**. Lake Maurepas water surface elevation values measured at the USACE's Pass Manchac station are also reported for the same day as the measured peak flow along with the maximum stage recorded during the 5 day window around the peak flow date. The worst-case boundary condition for Lake Maurepas would be a constant elevation of +4.91 ft., NAVD88. The mean of all the 5 day peak values is 2.15 ft., NAVD88 which could be used to represent an average constant flood water elevation boundary condition.

Date	Port Vincent Discharge	Value Code1	Pass Manchac		
	(cfs)		Peak Discharge Water Surface Elevation2 (ft., NAVD88)	5-day Maximum Water Surface Elevation (ft., NAVD88)	
8/15/2016	199,000	Р	1.30	1.72	
1/28/1990	69,500	Р	0.73	1.02	
1/23/1993	48,400	Р	1.79	1.93	
4/30/1997	45,300	Р	1.08	2.02	
4/13/1995	44,700	Р	1.92	2.48	
3/8/1992	43,100	Р	1.05	2.03	
11/1/1985	42,200	Р	3.62	4.91	
2/24/2003	42,100	Р	0.95	1.59	
1/9/1998	41,000	Р	N/A	1.84	
3/14/2016	41,700	A	2.59	3.03	
4/4/1988	38,300	Р	2.29	2.69	
1/13/2013	35,200	Р	2.05	2.18	
3/17/1999	33,900	Р	0.72	0.83	
2/28/1997	31,800	A	1.33	1.88	
5/18/2004	31,400	Р	2.09	2.09	

P=Peak Value / A=Average Daily Value.

N/A = Not Available.

Period of Record Peak Flood Conditions

The water surface elevation of record in Lake Maurepas measured at the Pass Manchac station occurred on August 30, 2012. On this date the water surface elevation at Pass Manchac reached 6.54 ft., NAVD88, at the same time that Hurricane Isaac made landfall along the Louisiana-Mississippi coast southeast of Lake Maurepas. The time series boundary conditions for the record water surface elevation are given in **Table 31** and can be copied to the HEC-RAS flow file.

Table 31: Period of record flood conditions downstream boundary condition water surface elevation hydrograph.

Surface elevation flydrograph.						
Hour	Date / Time	Elevation (ft, NAVD 88)				
0	1/1/18 12:00	1.21				
1	1/1/18 13:00	1.21				
2	1/1/18 14:00	1.21				
3	1/1/18 15:00	1.21				
4	1/1/18 16:00	1.21				
5	1/1/18 17:00	1.20				
6	1/1/18 18:00	1.20				
7	1/1/18 19:00	1.20				
8	1/1/18 20:00	1.20				
9	1/1/18 21:00	1.20				
10	1/1/18 22:00	1.20				
11	1/1/18 23:00	1.20				
12	1/2/18 0:00	1.20				
13	1/2/18 1:00	1.19				
14	1/2/18 2:00	1.19				
15	1/2/18 3:00	1.19				
16	1/2/18 4:00	1.19				
17	1/2/18 5:00	1.19				
18	1/2/18 6:00	1.19				
19	1/2/18 7:00	1.19				
20	1/2/18 8:00	1.19				
21	1/2/18 9:00	1.18				
22	1/2/18 10:00	1.18				

Table 31: Period of record flood conditions downstream boundary condition water surface elevation hydrograph.

Hour	Date / Time	Elevation (ft, NAVD 88)
23	1/2/18 11:00	1.18
24	1/2/18 12:00	1.18
25	1/2/18 13:00	1.23
26	1/2/18 14:00	1.28
27	1/2/18 15:00	1.33
28	1/2/18 16:00	1.37
29	1/2/18 17:00	1.42
30	1/2/18 18:00	1.47
31	1/2/18 19:00	1.52
32	1/2/18 20:00	1.57
33	1/2/18 21:00	1.62
34	1/2/18 22:00	1.66
35	1/2/18 23:00	1.71
36	1/3/18 0:00	1.76
37	1/3/18 1:00	1.81
38	1/3/18 2:00	1.86
39	1/3/18 3:00	1.91
40	1/3/18 4:00	1.95
41	1/3/18 5:00	2.00
42	1/3/18 6:00	2.05
43	1/3/18 7:00	2.10
44	1/3/18 8:00	2.15
45	1/3/18 9:00	2.20

Table 31: Period of record flood conditions downstream boundary condition water surface elevation hydrograph.

Hour	Date / Time	Elevation (ft, NAVD 88)
46	1/3/18 10:00	2.24
47	1/3/18 11:00	2.29
48	1/3/18 12:00	2.34
49	1/3/18 13:00	2.52
50	1/3/18 14:00	2.69
51	1/3/18 15:00	2.87
52	1/3/18 16:00	3.04
53	1/3/18 17:00	3.22
54	1/3/18 18:00	3.39
55	1/3/18 19:00	3.57
56	1/3/18 20:00	3.74
57	1/3/18 21:00	3.92
58	1/3/18 22:00	4.09
59	1/3/18 23:00	4.27
60	1/4/18 0:00	4.44
61	1/4/18 1:00	4.62
62	1/4/18 2:00	4.79
63	1/4/18 3:00	4.97
64	1/4/18 4:00	5.14
65	1/4/18 5:00	5.32
66	1/4/18 6:00	5.49
67	1/4/18 7:00	5.67
68	1/4/18 8:00	5.84

Table 31: Period of record flood conditions downstream boundary condition water surface elevation hydrograph.

Hour	Date / Time	Elevation (ft, NAVD 88)
69	1/4/18 9:00	6.02
70	1/4/18 10:00	6.19
71	1/4/18 11:00	6.37
72	1/4/18 12:00	6.54
73	1/4/18 13:00	6.51
74	1/4/18 14:00	6.47
75	1/4/18 15:00	6.44
76	1/4/18 16:00	6.41
77	1/4/18 17:00	6.37
78	1/4/18 18:00	6.34
79	1/4/18 19:00	6.31
80	1/4/18 20:00	6.27
81	1/4/18 21:00	6.24
82	1/4/18 22:00	6.21
83	1/4/18 23:00	6.17
84	1/5/18 0:00	6.14
85	1/5/18 1:00	6.11
86	1/5/18 2:00	6.07
87	1/5/18 3:00	6.04
88	1/5/18 4:00	6.01
89	1/5/18 5:00	5.97
90	1/5/18 6:00	5.94
91	1/5/18 7:00	5.91

Table 31: Period of record flood conditions downstream boundary condition water surface elevation hydrograph.

Surface elevation hydrograph.		
Hour	Date / Time	Elevation (ft, NAVD 88)
92	1/5/18 8:00	5.87
93	1/5/18 9:00	5.84
94	1/5/18 10:00	5.81
95	1/5/18 11:00	5.77
96	1/5/18 12:00	5.74
97	1/5/18 13:00	5.70
98	1/5/18 14:00	5.67
99	1/5/18 15:00	5.63
100	1/5/18 16:00	5.60
101	1/5/18 17:00	5.56
102	1/5/18 18:00	5.53
103	1/5/18 19:00	5.49
104	1/5/18 20:00	5.46
105	1/5/18 21:00	5.42
106	1/5/18 22:00	5.39
107	1/5/18 23:00	5.35
108	1/6/18 0:00	5.32
109	1/6/18 1:00	5.28
110	1/6/18 2:00	5.24
111	1/6/18 3:00	5.21
112	1/6/18 4:00	5.17
113	1/6/18 5:00	5.14
114	1/6/18 6:00	5.10

Table 31: Period of record flood conditions downstream boundary condition water surface elevation hydrograph.

Hour	Date / Time	Elevation (ft, NAVD 88)
115	1/6/18 7:00	5.07
116	1/6/18 8:00	5.03
117	1/6/18 9:00	5.00
118	1/6/18 10:00	4.96
119	1/6/18 11:00	4.93
120	1/6/18 12:00	4.89
121	1/6/18 13:00	4.86
122	1/6/18 14:00	4.83
123	1/6/18 15:00	4.80
124	1/6/18 16:00	4.77
125	1/6/18 17:00	4.74
126	1/6/18 18:00	4.72
127	1/6/18 19:00	4.69
128	1/6/18 20:00	4.66
129	1/6/18 21:00	4.63
130	1/6/18 22:00	4.60
131	1/6/18 23:00	4.57
132	1/7/18 0:00	4.54
133	1/7/18 1:00	4.51
134	1/7/18 2:00	4.48
135	1/7/18 3:00	4.45
136	1/7/18 4:00	4.42
137	1/7/18 5:00	4.39

Table 31: Period of record flood conditions downstream boundary condition water surface elevation hydrograph.

Surface elevation hydrograph.		
Hour	Date / Time	Elevation (ft, NAVD 88)
138	1/7/18 6:00	4.37
139	1/7/18 7:00	4.34
140	1/7/18 8:00	4.31
141	1/7/18 9:00	4.28
142	1/7/18 10:00	4.25
143	1/7/18 11:00	4.22
144	1/7/18 12:00	4.19
145	1/7/18 13:00	4.16
146	1/7/18 14:00	4.13
147	1/7/18 15:00	4.10
148	1/7/18 16:00	4.07
149	1/7/18 17:00	4.04
150	1/7/18 18:00	4.01
151	1/7/18 19:00	3.97
152	1/7/18 20:00	3.94
153	1/7/18 21:00	3.91
154	1/7/18 22:00	3.88
155	1/7/18 23:00	3.85
156	1/8/18 0:00	3.82
157	1/8/18 1:00	3.79
158	1/8/18 2:00	3.76
159	1/8/18 3:00	3.73
160	1/8/18 4:00	3.70

Table 31: Period of record flood conditions downstream boundary condition water surface elevation hydrograph.

Hour	Date / Time	Elevation (ft, NAVD 88)
161	1/8/18 5:00	3.67
162	1/8/18 6:00	3.64
163	1/8/18 7:00	3.60
164	1/8/18 8:00	3.57
165	1/8/18 9:00	3.54
166	1/8/18 10:00	3.51
167	1/8/18 11:00	3.48
168	1/8/18 12:00	3.45
169	1/8/18 13:00	3.42
170	1/8/18 14:00	3.39
171	1/8/18 15:00	3.36
172	1/8/18 16:00	3.34
173	1/8/18 17:00	3.31
174	1/8/18 18:00	3.28
175	1/8/18 19:00	3.25
176	1/8/18 20:00	3.22
177	1/8/18 21:00	3.19
178	1/8/18 22:00	3.16
179	1/8/18 23:00	3.13
180	1/9/18 0:00	3.11
181	1/9/18 1:00	3.08
182	1/9/18 2:00	3.05
183	1/9/18 3:00	3.02

Table 31: Period of record flood conditions downstream boundary condition water surface elevation hydrograph.

Surface elevation hydrograph.		
Hour	Date / Time	Elevation (ft, NAVD 88)
184	1/9/18 4:00	2.99
185	1/9/18 5:00	2.96
186	1/9/18 6:00	2.93
187	1/9/18 7:00	2.90
188	1/9/18 8:00	2.88
189	1/9/18 9:00	2.85
190	1/9/18 10:00	2.82
191	1/9/18 11:00	2.79
192	1/9/18 12:00	2.76
193	1/9/18 13:00	2.74
194	1/9/18 14:00	2.71
195	1/9/18 15:00	2.69
196	1/9/18 16:00	2.67
197	1/9/18 17:00	2.64
198	1/9/18 18:00	2.62
199	1/9/18 19:00	2.60
200	1/9/18 20:00	2.57
201	1/9/18 21:00	2.55
202	1/9/18 22:00	2.53
203	1/9/18 23:00	2.50
204	1/10/18 0:00	2.48
205	1/10/18 1:00	2.46
206	1/10/18 2:00	2.43

Table 31: Period of record flood conditions downstream boundary condition water surface elevation hydrograph.

Hour	Date / Time	Elevation (ft, NAVD 88)
207	1/10/18 3:00	2.41
208	1/10/18 4:00	2.39
209	1/10/18 5:00	2.36
210	1/10/18 6:00	2.34
211	1/10/18 7:00	2.32
212	1/10/18 8:00	2.29
213	1/10/18 9:00	2.27
214	1/10/18 10:00	2.25
215	1/10/18 11:00	2.22
216	1/10/18 12:00	2.20
217	1/10/18 13:00	2.19
218	1/10/18 14:00	2.17
219	1/10/18 15:00	2.16
220	1/10/18 16:00	2.14
221	1/10/18 17:00	2.13
222	1/10/18 18:00	2.11
223	1/10/18 19:00	2.10
224	1/10/18 20:00	2.08
225	1/10/18 21:00	2.07
226	1/10/18 22:00	2.05
227	1/10/18 23:00	2.04
228	1/11/18 0:00	2.03
229	1/11/18 1:00	2.01

Table 31: Period of record flood conditions downstream boundary condition water surface elevation hydrograph.

surface elevation hydrograph.		
Hour	Date / Time	Elevation (ft, NAVD 88)
230	1/11/18 2:00	2.00
231	1/11/18 3:00	1.98
232	1/11/18 4:00	1.97
233	1/11/18 5:00	1.95
234	1/11/18 6:00	1.94
235	1/11/18 7:00	1.92
236	1/11/18 8:00	1.91
237	1/11/18 9:00	1.89
238	1/11/18 10:00	1.88
239	1/11/18 11:00	1.86
240	1/11/18 12:00	1.85
241	1/11/18 13:00	1.85
242	1/11/18 14:00	1.86
243	1/11/18 15:00	1.86
244	1/11/18 16:00	1.87
245	1/11/18 17:00	1.87
246	1/11/18 18:00	1.87
247	1/11/18 19:00	1.88
248	1/11/18 20:00	1.88
249	1/11/18 21:00	1.88
250	1/11/18 22:00	1.89
251	1/11/18 23:00	1.89
252	1/12/18 0:00	1.90

Table 31: Period of record flood conditions downstream boundary condition water surface elevation hydrograph.

Hour	Date / Time	Elevation (ft, NAVD 88)
253	1/12/18 1:00	1.90
254	1/12/18 2:00	1.90
255	1/12/18 3:00	1.91
256	1/12/18 4:00	1.91
257	1/12/18 5:00	1.91
258	1/12/18 6:00	1.92
259	1/12/18 7:00	1.92
260	1/12/18 8:00	1.93
261	1/12/18 9:00	1.93
262	1/12/18 10:00	1.93
263	1/12/18 11:00	1.94
264	1/12/18 12:00	1.94
265	1/12/18 13:00	1.94
266	1/12/18 14:00	1.94
267	1/12/18 15:00	1.94
268	1/12/18 16:00	1.94
269	1/12/18 17:00	1.94
270	1/12/18 18:00	1.94
271	1/12/18 19:00	1.94
272	1/12/18 20:00	1.94
273	1/12/18 21:00	1.94
274	1/12/18 22:00	1.94
275	1/12/18 23:00	1.94

Table 31: Period of record flood conditions downstream boundary condition water surface elevation hydrograph.

	ration ny arogra	
Hour	Date / Time	Elevation (ft, NAVD 88)
276	1/13/18 0:00	1.94
277	1/13/18 1:00	1.93
278	1/13/18 2:00	1.93
279	1/13/18 3:00	1.93
280	1/13/18 4:00	1.93
281	1/13/18 5:00	1.93
282	1/13/18 6:00	1.93
283	1/13/18 7:00	1.93
284	1/13/18 8:00	1.93
285	1/13/18 9:00	1.93
286	1/13/18 10:00	1.93
287	1/13/18 11:00	1.93
288	1/13/18 12:00	1.93
289	1/13/18 13:00	1.92
290	1/13/18 14:00	1.90
291	1/13/18 15:00	1.89
292	1/13/18 16:00	1.88
293	1/13/18 17:00	1.86
294	1/13/18 18:00	1.85
295	1/13/18 19:00	1.84
296	1/13/18 20:00	1.82
297	1/13/18 21:00	1.81
298	1/13/18 22:00	1.80

Table 31: Period of record flood conditions downstream boundary condition water surface elevation hydrograph.

Hour	Date / Time	Elevation (ft, NAVD 88)
299	1/13/18 23:00	1.78
300	1/14/18 0:00	1.77
301	1/14/18 1:00	1.76
302	1/14/18 2:00	1.74
303	1/14/18 3:00	1.73
304	1/14/18 4:00	1.72
305	1/14/18 5:00	1.70
306	1/14/18 6:00	1.69
307	1/14/18 7:00	1.68
308	1/14/18 8:00	1.66
309	1/14/18 9:00	1.65
310	1/14/18 10:00	1.64
311	1/14/18 11:00	1.62
312	1/14/18 12:00	1.61
313	1/14/18 13:00	1.61
314	1/14/18 14:00	1.61
315	1/14/18 15:00	1.60
316	1/14/18 16:00	1.60
317	1/14/18 17:00	1.60
318	1/14/18 18:00	1.60
319	1/14/18 19:00	1.59
320	1/14/18 20:00	1.59
321	1/14/18 21:00	1.59

Table 31: Period of record flood conditions downstream boundary condition water surface elevation hydrograph.

Hour	Date / Time	Elevation (ft, NAVD 88)
322	1/14/18 22:00	1.59
323	1/14/18 23:00	1.58
324	1/15/18 0:00	1.58
325	1/15/18 1:00	1.58
326	1/15/18 2:00	1.58
327	1/15/18 3:00	1.57
328	1/15/18 4:00	1.57
329	1/15/18 5:00	1.57
330	1/15/18 6:00	1.57
331	1/15/18 7:00	1.56
332	1/15/18 8:00	1.56
333	1/15/18 9:00	1.56
334	1/15/18 10:00	1.56
335	1/15/18 11:00	1.55
336	1/15/18 12:00	1.55
337	1/15/18 13:00	1.55
338	1/15/18 14:00	1.54
339	1/15/18 15:00	1.54
340	1/15/18 16:00	1.53
341	1/15/18 17:00	1.53
342	1/15/18 18:00	1.52
343	1/15/18 19:00	1.52
344	1/15/18 20:00	1.51

Table 31: Period of record flood conditions downstream boundary condition water surface elevation hydrograph.

	, , , , , , , , , , , , , , , , , , ,	
Hour	Date / Time	Elevation (ft, NAVD 88)
345	1/15/18 21:00	1.51
346	1/15/18 22:00	1.50
347	1/15/18 23:00	1.50
348	1/16/18 0:00	1.49
349	1/16/18 1:00	1.49
350	1/16/18 2:00	1.48
351	1/16/18 3:00	1.48
352	1/16/18 4:00	1.47
353	1/16/18 5:00	1.47
354	1/16/18 6:00	1.46
355	1/16/18 7:00	1.46
356	1/16/18 8:00	1.45
357	1/16/18 9:00	1.45
358	1/16/18 10:00	1.44
359	1/16/18 11:00	1.44

Stationarity Analysis of Historic Precipitation and Flow

In 2016, the United States Army Corps of Engineers (USACE) issued Engineering and Construction Bulletin No. 2016-25 (ECB 2016-25), which stipulated that climate change should be considered for all Federally funded projects in planning stages. A qualitative analysis of historical climate trends as well as an assessment of future projections was provisioned by ECB 2016-25. Even if climate change does not appear to be an impact for a particular region of interest, the formal analysis outlined in ECB 2016-25 results in better informed planning and engineering decisions. For example, an increase in impervious area can often result in higher streamflow, even with no trend in heavy rainfall.

Although this study did not fall under the requirements of ECB 2016-25, future applications of the model to assess the feasibility of project alternatives likely would fall under this requirement if Federal funds are used for planning and implementation. To provide future users of the ARBNM with an insight into the potential vulnerability of the watershed, stationarity tests were performed on long-record precipitation and streamflow gages to assess whether non-stationarity needs to be factored in for future planning projects. These tests were performed through water year 2016.

The full stationarity study is included in **Appendix 5**.

Summary of Stationarity Assessment

The Flood of August 2016 significantly increased the estimated 1% Annual Exceedance Probability flows for the lower reaches of Amite and Comite Rivers. The 1% AEP is still considerably lower than the flows recorded during that event.

The stationarity tests show positive trends in both precipitation and streamflow. For precipitation gages, regional-scale changes in Annual Maximum Series, Peaks-Over-Threshold and the 99th percentile of daily rainfall all suggest an upward increase in heavy rainfall magnitude and intensity. For streamflow, increases were found at 3 of the 6 tested gages (with no significant changes at the other sites): the Comite River near Olive Branch, Comite River near Comite and Amite River near Denham Springs. For the Olive Branch site, only two of the four trend tests found significant results, making it difficult to definitively confirm that nonstationarity was present. The two other sites had more convincing evidence of increased streamflow over time, though it is difficult to determine if this is due to changes in precipitation or impervious cover owing to a marked increase in the number of residential structures being built around the time of the changes in streamflow.

CONSEQUENCE MODEL

Version 1.0 of the February 2019 Amite River Basin (ARB) consequence model was developed in HEC-FIA Version 3.0.1 and covered the entire ARB. The model was developed to operate both standalone by reading in HEC-RAS gridded outputs from RAS Mapper as well as seamlessly integrating within HEC-WAT to develop on-the-fly consequence assessments from the ARB HEC-RAS model results. HEC-FIA calculates economic losses (structure, content, etc.), agriculture losses, and expected life loss.

Base Input Data

As illustrated in **Figure 69**, the HEC-FIA model included:

- 230,382 structures derived from the 2018 LA DOTD LiDAR point cloud
- HUC8 boundary for the ARB
- 6 Parish boundaries within the ARB
- 2016 Agriculture data derived from the USDA National Agricultural Statistics Service CropScape and Cropland Data Later (NASS CDL).

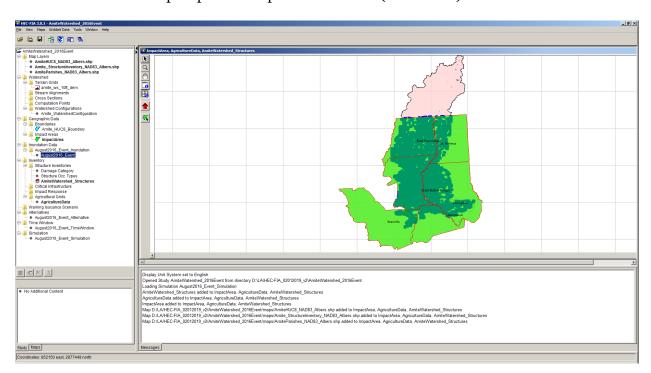


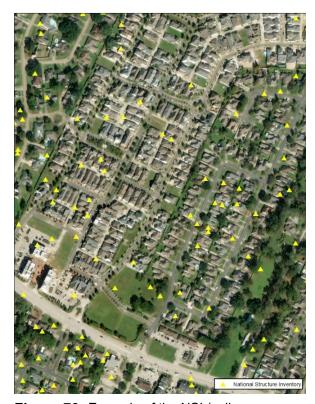
Figure 69: ARB HEC-FIA Consequence Model Overview

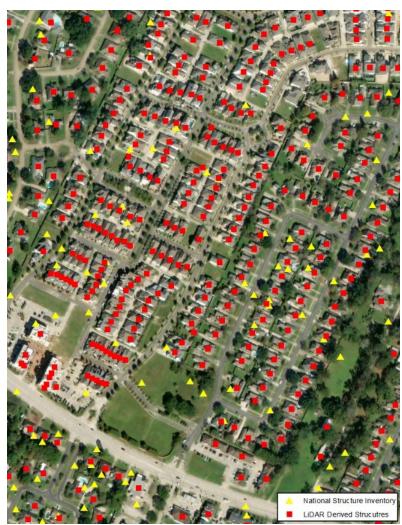
HEC-FIA required an array of inputs as listed in **Table 32**. In order to produce the necessary structure inventory input for the HEC-FIA model, Dewberry initially investigated utilizing parish assessor and Hazus data; however, it was quickly determined that the necessary input fields for HEC-FIA were either incomplete or not present in these datasets. In an effort to refine this data, Dewberry acquired the National Structure Inventory (NSI) from FEMA through the public website:

https://data.femadata.com/DR4277_Severe_Storms_Flooding_LA/Structure_Data/.

The NSI is based on FEMA's Hazus database, but has been enhanced with the NLCD database to identify areas that are urbanized. This was performed by the USACE who is understood to have converted the Hazus database to point-based structures that contain consistent attributes throughout the entire United States. Investigation of the NSI data showed that, while this dataset was more robust than the Hazus and assessor data, structure locations were not accurately represented as illustrated in **Figure 70**. This identified a need to develop more accurate structure inventory for the ARB HEC-FIA model.

Table 32: HEC-FIA Structure Inventory inputs for HEC-FIA		
Damage Category	Number of Cars	
Occupancy Type	Population 5pm Over 65	
Replacement Value	Population 5pm Under 65	
Construction Type	Population Day Over 65	
Content Value	Population Day Under 65	
Foundation Height	Population Night Over 65	
Foundation Type	Population Night Under 65	
Number of Stories	Number of Years in Service	




Figure 70: Example of the NSI (yellow triangles) in East Baton Rouge Parish.

Building Footprint Development

To overcome the limitations of NSI data and meet the needs of the ARB HEC-FIA model, Dewberry developed approximate building footprints for the entire ARB using point cloud information from the 2018 LA DOTD LiDAR. A high level cleaning was performed on the building footprints to remove artifacts and minor ancillary structures (i.e. bridges, overpasses, boats, sheds etc.). If multiple structures were located within a single parcel (where parcel information was acquired), then the structure with the largest area was kept, and remaining structures were removed being assumed to represent ancillary structures of minimal economic value such as pet houses and small storage sheds. However, upon review of parcels with 4 or more sizable structures, it was generally determined that these represented either industrial locations or locations where new housing developments have occurred and the parcel data does not represent the subdivided lots. Therefore these buildings were preserved and assumed to be valid structure of significant economic value. **Figure 71** shows a comparison between the LiDAR derived structures and the NSI.

Figure 71: Comparison of LiDAR derived structures (red squares) and the NSI (yellow triangles) in East Baton Rouge parish.

With the building footprints completed, information listed in Table 32 was populated for each structure. Ascension, East Baton Rouge, and Livingston parishes supplied parcel data, which contained information regarding the replacement value of the structure, but no other information. No parcel information was obtained from East Feliciana, Iberville, nor St. Helena parishes. To conflate the necessary fields to the building footprints, a spatial query was done, where the information from the closest NSI point was assigned to the LiDAR derived structure. Replacement values for Ascension, East Baton Rouge, and Livingston structures were assigned from the parcel dataset, and content value was assumed to be 50% of the replacement value. All other fields were conflated from the NSI data. For East Feliciana, Iberville, and St. Helena parishes, all fields were conflated from the NSI data, and attributes populated for all points.

Agricultural Grid

Agricultural information was determined from the USDA NASS CDL grid which can be downloaded from https://nassgeodata.gmu.edu/CropScape/. This indicated that there are eight crops within the ARB: corn, other hays, rice, soybeans, sorghum, sugar cane, sweet potatoes, and winter wheat.

In the ARB, agriculture data makes up only 0.0047% of the total land area; however, as demonstrated below, HEC-FIA is able to compute agricultural damage based on depth and duration of flooding. For future basin studies, this will likely become more significant with an example being north Louisiana, where there are large areas of sweet potato and other crops.

Inundation Grids

HEC-FIA accepts inundation information in several formats. For ARB HEC-FIA model, the hydraulic data type is assumed to utilize grids only since the ARB HEC-RAS model is fully spatially referenced and grids can be automatically exported from RAS Mapper in HEC-FIA ready TIF formats. Figure 72 illustrates the input grids necessary for this model.

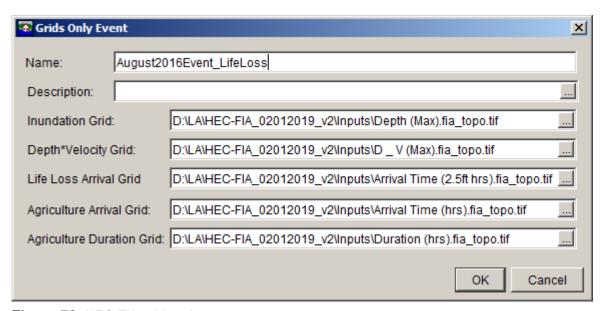


Figure 72: HEC-FIA grids only event set-up.

Model Parameters

Economic Losses

As previously described, the input structures into the HEC-FIA model have multiple fields to determine both the economic losses as well as the life-loss computations. The most critical parameter for structure and content value loss calculations are the structure occupancy type (inputted as the damage category). HEC-FIA accepts 36 structure occupancy types, which associates the structure with a predetermined depth-damage curve within HEC-FIA. **Table 33** shows the structure occupancy type, description, and number of structures in the ARB determined from the building information developed specifically for this project.

Table 33: Occupancy	Type and Count Estimated for the ARB	
Structure Occupancy Type	Description	Number of Structures
Agricultural	Average Agricultural	446
Commercial	Retail, Wholesale, Personal & Repair Services, Professional/Tech Services, Bank, Hospital, Medical Office, Entertainment/recreation, Theater	12,697
Educational	School, College/University	852
Government	Government Services, Emergency Response	562
Industrial	Heavy Industrial, Light Industrial, Food/Drug/Chemical, Metals/Minerals Processing, High Technology, Construction	3,321
Religious	Church	2,043
Residential	1, 2, or 3 Story, Split Level, Condominium with living area on multiple floors, Mobile Home, Hotel & Motel, Institutional Dormitory, Nursing Home	210,461
Total:		230,382

Examples of the depth damage curves utilized by HEC-FIA to estimate economic losses are presented in Figure 73 and Figure 74. These depth-damage functions are default values within the HEC-FIA software. The depth-damage relationships closely follows nationally accepted values present in FEMA's Hazus software.

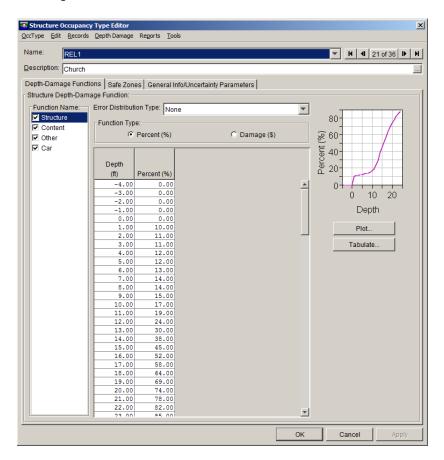
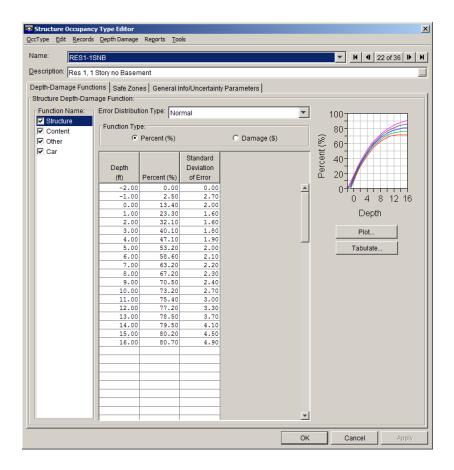



Figure 73: Depth-damage curve associated with structure occupancy type REL 1, Church.

Figure 74: Depth-damage curve associated with structure occupancy type RES1-1SNB, Residential one story with no basement.

Agricultural Data

As previously discussed, HEC-FIA can also compute the agriculture loss for flooding events. The USDA NASS CDL grid is imported into HEC-FIA. Within the ARB, there were eight unique crops identified: corn, other hays, rice, soybeans, sorghum, sugar cane, sweet potatoes, and winter wheat. For each unique crop type, several factors were determined including the fixed planting cost, typical harvest date, cost to harvest, yield, and unit price. These values were determined by investigating reports from various entities, including the USDA 'Field Crops – Usual Planting and Harvesting Dates' and the 2016 Crop Budgets from the LSU Agriculture Center.

HEC-FIA also requires the duration versus percent crop loss to compute crop loss information. **Figure 75** shows how this information is inputted into HEC-FIA and can be customized per crop.

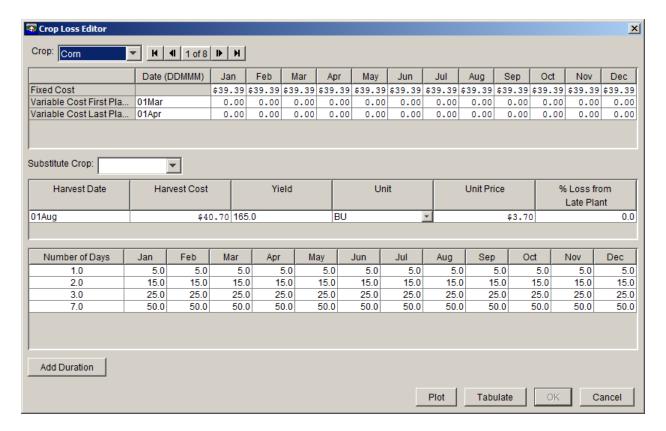
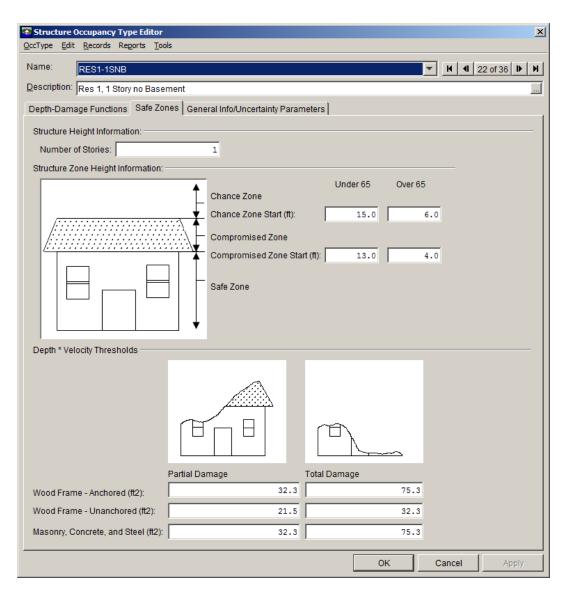


Figure 75: Crop loss editor table in HEC-FIA.

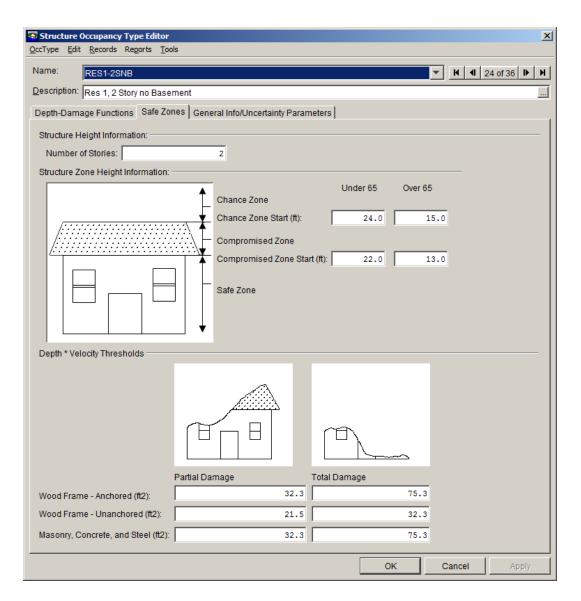
Life-Loss

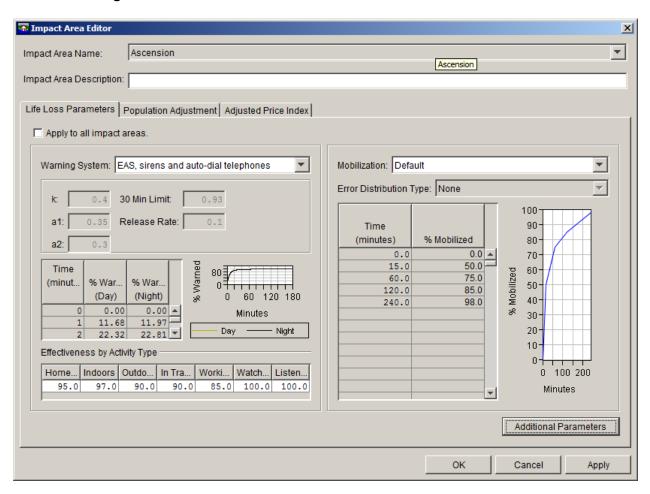

HEC-FIA has the ability to model the life-loss for flooding events utilizing a simplified version of the LIFESim methodology (Utah State University, 2005). The key difference between the full version of LIFESim methodology used in HEC-LifeSim and the simplified HEC-LifeSim is the evacuation modeling simulations. Further discussion of the evacuation definition will be discussed in the Alternatives section below.

Life-Loss simulations for the ARB requires user defined information regarding the structure stability under flooding conditions, impact areas, and warning issuance scenarios; as well as outputs from the ARB HEC-RAS model, including depth times velocity grid and arrival time of the flooding.

The structure occupancy type also informs HEC-FIA Life-Loss simulations the "safe zone" within each structure. The safe zone refers to the depth of water necessary to deem a structure unsafe during a flooding event. Figure 76 and Figure 77 show examples of different stories and the variance of the safe zone. Safe zones are computed differently based on age of occupants, and are categorized as over 65 and under 65.

Figure 76: Safe zone parameters for structure occupancy type RES1-1SNB, Residential one story with no basement




Figure 77: Safe zone parameters for structure occupancy type RES1-2SNB, Residential two story with no basement.

Impact Area Parameters and Warning Issuance Scenario

The impact parameters in HEC-FIA allows the user to input the effectiveness of the warning system as related to the flooding event. The warning system was assumed to be "EAS, sirens, and auto-dial telephones," and the default values for timing and effectiveness were utilized as illustrated in **Figure 78**.

Figure 78: Impact area editor showing the default values chosen for the ARB.

"Additional parameters" were selected to allow the life-loss calculations to perform the calculations with uncertainty. The default values for the three zones (safe zone [sz], compromised zone [cz], and chance zone [chz]), as well as the non-evacuation depth of 2 ft., and the activity type distribution were utilized as illustrated in **Figure 79**.

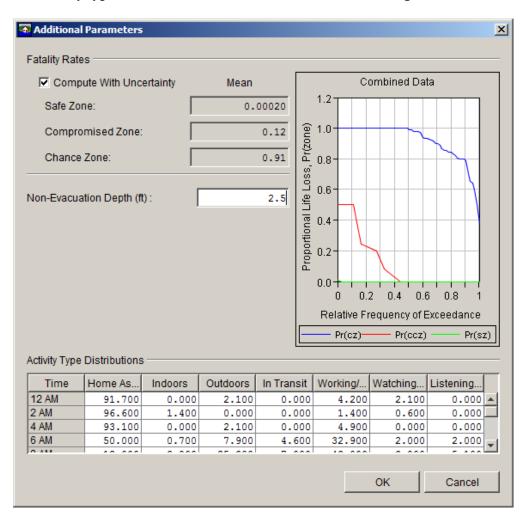


Figure 79: "Additional Parameters" editor for computing life-loss with uncertainty.

The final parameter for life-loss calculations is the Warning Issuance Scenario, which defines the timing of when the warning is issued relative to the start of the flooding event. For the ARB HEC-FIA model, the issuance scenario was set to "12 hrs" relative to start time (i.e. the warnings were issued 12 hrs after the perceived start of the flooding event) as illustrated in **Figure 80**. For the ARB hydraulics, precipitation began falling on August 10th at noon. **Figure 81** details the actual timing of watches and warnings issued by the NWS within the ARB for the August 2016 event which was used to develop the 12 hour assumption.

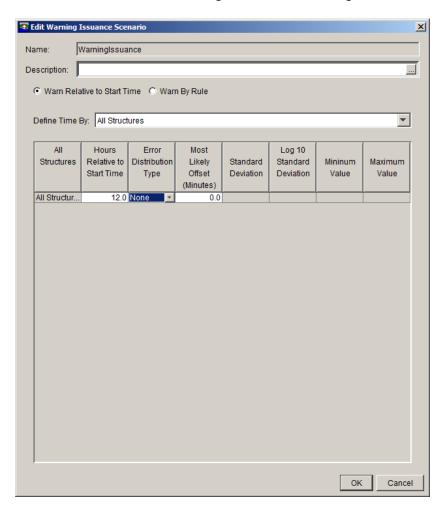


Figure 80: Warning issuance scenario for the August 2016 flooding event.

- Mon 1014a Hydrologic Outlook (ESFLIX) issued headlining Heavy Rainfall May Produce Elevated River Levels in Coming Days mentioning a flood watch may be posted at a later time
- Mon 359p First email sent to emergency managers talking about heavy rainfall potential later in the week
- Mon 451p First graphic posted to social media and website showing potential for heavy rainfall later in the week.
- Tues 139p Flood Watch issued for St. Tammany and MS Coastal Counties
- Tues 200p First webinar briefing held for emergency managers to talk about heavy rainfall potential
- Wed 951a Flood Watch expanded to include north shore and southern Tangipahoa
- Thur 432a Flood Watch replaced with Flash Flood Watch and expanded to include all of SE LA and S MS Thursday morning (first issuance for BTR area)
- Thur 854a First Flash Flood Warning issued for parts of coastal MS
- Thur 928a First Flash Flood Warning issued for parts of LA River Parishes
- Thur 1019a First Flood Warning issued for Amite/Comite Rivers
- Thur 516p First Flash Flood Warning issued for part of SW MS
- Fri 209a First Flash Flood Warning issued for parishes north of Baton Rouge
- Fri 423a First Flash Flood Warning issued for Baton Rouge and surrounding areas
- Fri 618a First Flash Flood Emergency issued for part of SW MS
- Fri 621a First Flash Flood Emergency issued for parts of SE LA north of Baton Rouge
- Fri 1005a First Flash Flood Emergency issued for parts of Baton Rouge metro

Figure 81: Timeline of watches and warnings issued by the NWS for Louisiana.

Source: Ken Graham, Meteorologist in Charge, National Weather Service for New Orleans and Baton Rouge

Alternatives

The Alternatives input in HEC-FIA informs HEC-FIA what datasets to use in modeling the economic damages, agricultural damages, and life-loss as illustrated in Figure 82.

The simplified HEC-LifeSim requires users to input the evacuation information in one of four ways:

- Let HEC-FIA Compute. The user inputs the Impact Area and a nominal evacuation velocity. The distance from each structure is subsequently computed using a straight line from the structure to the edge of the impact area, and the evacuation velocity determines the amount of time to arrive at the impact area boundary
- All Structures. The evacuation time for all structures within the study are assigned a nominal evacuation time.
- Impact Areas. The evacuation time for all structures within a specific impact area will be assigned the same nominal evacuation time.

• Individual structures. Each structure within the study area can be assigned an evacuation time based on the user input.

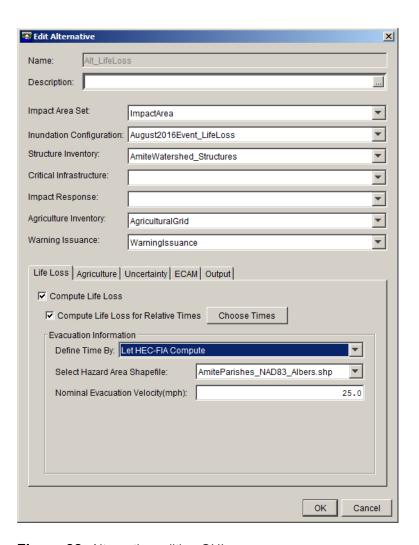


Figure 82: Alternative editing GUI

Results and Validation

To ensure that the ARB HEC-FIA model produces reasonable results for economic and life loss estimates, the August 2016 flood was used to validate results against documented damages and reported fatalities.

Economic loses and life-loss for this event were summarized in the report "The Economic Impact of the August 2016 Floods in the State of Louisiana," a report commissioned by Louisiana Economic Development (LED). The report estimates the number of structures damaged, economic losses from flooding, and life-loss as a result of the flooding.

Economic Damages

Table 34 summarizes the economic damages computed in the HEC-FIA simulation of the August 2016 event.

Table 34: Summary 2016 Flood	Table 34: Summary of HEC-FIA Computed Economic Damages Estimated for the August 2016 Flood										
Parish	Structure Damage (\$1000)	Content Damage (\$1000)	Car Damage (\$1000)	Total (\$1000)							
Ascension	102,303.07	38,023.41	9,895.57	150,222.05							
East Baton Rouge	1,499,495.04	706,891.26	112,432.77	2,318,818.82							
East Feliciana	9,994.10	5,534.93	1,588.50	17,117.52							
Iberville	8,018.76	3,921.36	45.95	11,986.07							
Livingston	1,134,989.06	514,080.80	58,352.05	1,707,421.82							
St. Helena	2,772.98	1,148.95	782.31	4,704.24							
Total	2,757,573.12	1,269,600.64	183,097.14	4,210,270.98							

Per the LED report, the total structure damage for the entire event (consisting of 20 counties), was estimated at \$4.439 billion dollars, while the total content damage was estimated at \$1.541 billion dollars. Note that the LED report does not break down the damage numbers by parish, however, this would suggest that the HEC-FIA results are reasonable and as expected are less than the values reported by LED which was not limited to the ARB.

Number of Structures

Table 35 compares the number of structures damaged from the HEC-FIA model versus the number estimated from the LED report for the 6 parishes in the ARB for the August 2016 flood. Note, that the LED numbers are parish-wide.

Table 35: Summary of HEC-FIA Computed Damaged Structures Counts Estimated for the August 2016 Flood									
Parish	HEC-FIA	LED Estimate	LED Weighted ¹						
Ascension	3,969	13,100	2,096						
East Baton Rouge	47,181	41,000	30,750						
East Feliciana	317	300	246						
Iberville	270	100	7						
Livingston	19,431	38,300	18,845						
St. Helena	67	400	132						
Total	71,235	93,200	52,076						

¹ The LED weighted values were determined assuming an even distribution of the structures for the portion of the parish within the ARB.

Life-Loss

HEC-FIA Life-Loss Detailed Report provides information about how the life-loss was calculated for the study area. The report aggregates the data to explain how life loss was computed. **Table 36** summarizes the documented and HEC-FIA simulated life loss estimates for the ARB. The documented life loss was obtained from online media sources which included the location of the fatality enabling life loss within the ARB to be isolated. It is important to note that HEC-FIA is unable to consider all local variables that may have life safety impacts. This may include variables such as the ownership of boats and large trucks with high ground clearance and four wheel drive. Within the ARB, there is visible evidence that boat and truck ownership is likely significantly higher than the national average. Additionally, the Cajun Navy, an informal ad-hoc volunteer group comprising of boat owners responded to the august 2016 flood to assist in evacuations which likely reduced life loss. Testing of the HEC-FIA life loss simulations indicated that it was highly sensitive to the amount of warning time given.

Table 36: Summary of obser	Table 36: Summary of observed and HEC-FIA simulated life loss for the August 2016 Flood for the ARB										
Parish	Documented	Life Loss ¹	HEC-FIA Modeled Life Loss								
	Under 65	Over 65	Under 65	Over 65							
Ascension	0	0	0	0							
East Baton Rouge	4	1	5	12							
East Feliciana	0	0	0	0							
Iberville	0	0	0	0							
Livingston ²	1	1	5	7							
St. Helena	0	0	0	0							
Total	5	2	10	19							

¹ Information obtained from https://www.nola.com/weather/2016/08/la flood victims black and whi.html

While there is considerable uncertainty when estimating life loss and HEC-FIA clearly over estimated life loss during the August 2016 flood, it does provide a good foundation for assessing project alternatives and performing an apples to apples comparison of the potential benefits.

The ARB HEC-FIA model provides a reliable platform for futures users to further refine the model and perform economic and life loss assessments to quantify and evaluate the potential consequences of both structural and non-structural measures on both a project and regional planning level.

² A total of 2 deaths were reported, but the age of one was not identified and was assumed to be under 65

HEC-WAT IMPLEMENTATION AND DEMONSTRATION PROJECTS

HEC-WAT is a relatively new tool developed by the USACE HEC with the goal to provide an integrated modeling framework that promotes the building, editing, and running of models commonly applied by multi-disciplinary teams including the saving and displaying of data and results in a coordinated fashion. More simply, HEC-WAT is an interface that streamlines and integrates a water resources study using software commonly applied by multi-disciplinary teams. Many tools within the HEC suite of software are implemented within HEC-WAT, thus allowing a study team to perform many of the necessary hydrologic, hydraulic, and planning/consequence analyses from a single interface. The ARB HEC-WAT model integrates the ARB HEC-HMS, HEC-RAS and HEC-FIA models as illustrated in **Figure 83**.

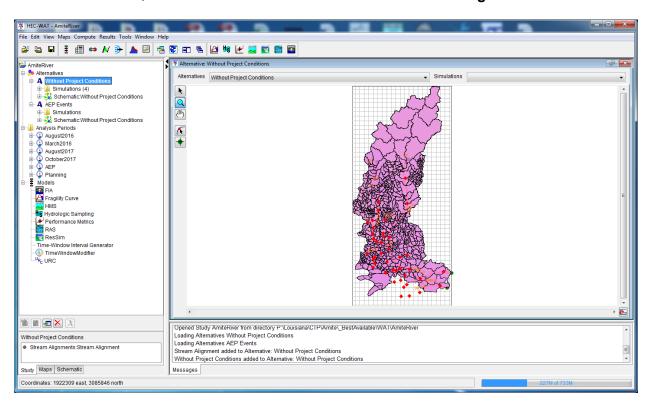


Figure 83: ARB HEC-WAT Model

HEC-WAT does not replace existing software but instead the framework allows them to work together. The model integration of the individual pieces of software within the HEC-WAT framework is achieved through the concept of a "plug-in". The plug-in is what allows the individual pieces of software to integrate without requiring special code in HEC-WAT to support the individual pieces of software. While the 400+ HEC-HMS inflow boundary conditions for ARB HEC-RAS model were manually linked, HEC-WAT allows for a streamlined process via a user interface to dynamically link the models together. As the ARBNM is improved with more detail in the future, HEC-WAT demonstrates the potential to be a valuable tool.

Additionally, model simulations can be linked as well. HEC-WAT allows the user to run the HEC-HMS and HEC-RAS models simultaneously. Traditionally, the HEC-HMS model is opened and run first with the HEC-HMS results potentially being copied over to the HEC-RAS model directory. Then, the HEC-RAS model is opened and run. Figure 84 shows how HEC-HMS and HEC-RAS can be dynamically linked. The "Location" column represents the HEC-RAS boundary conditions and the "Location/Parameter" column represents the HEC-HMS element where flow is to be delivered from. **Figure 85** shows how models can be linked together. As previously mentioned, the ARB HEC-WAT model included the ARB HEC-HMS, HEC-RAS, and HEC-FIA models.

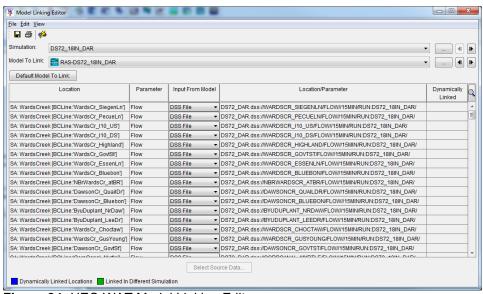


Figure 84: HEC-WAT Model Linking Editor

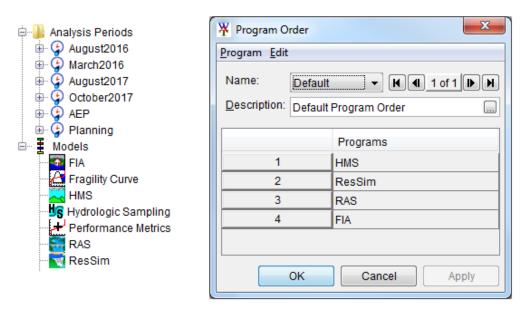


Figure 85: Software Linking in HEC-WAT

Through the Flood Risk Analysis (FRA) compute option HEC-WAT supports risk analysis on a systems approach for the analysis of complex riverine systems while implementing flood risk and uncertainty and systems analysis requirements. The HEC-WAT software also allows a user to perform plan comparisons or system performance analyses while incorporating risk analysis methods.

HEC-WAT was implemented to test its potential application for the ARBNM and Louisiana Watershed Initiative (LWI). This included integration of the HEC-HMS, HEC-RAS and HEC-FIA models which were used to demonstrate several project alternatives. A potential alternative can be seen below in **Figure 86**. In this example, the 18 in. design storm centered over Darlington is being modeled. Notice how the HEC-HMS and HEC-RAS model runs are selected for this alternative.

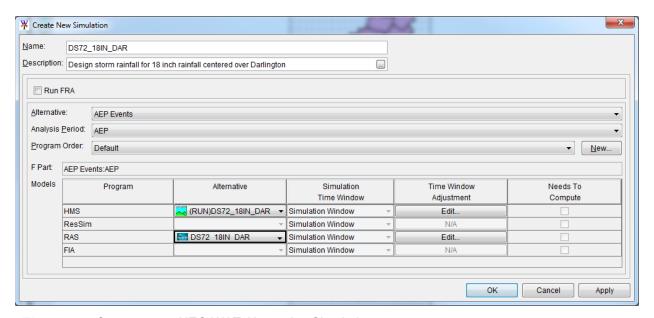


Figure 86: Create a new HEC-WAT Alternative Simulation.

At face value, the alternative above is no different than what was previously modeled other than being self-contained within one interface. However, HEC-WAT creates a localized copy of the HEC-RAS geometry which allows the user to test "What If" scenarios such as bridges being obstructed or the incorporation of structural flood protection measures without affecting the base, or original model geometry. The user can then run HEC-FIA to compare economic damages of selected alternatives.

While HEC-WAT demonstrated strong potential for future applications, particularly for advanced users to perform complex flood risk assessments for major flood control projects, due to the nature of provisional releases, numerous undocumented bugs were found making the software somewhat challenging to use in the interim. Additionally, HEC-WAT version 1.0 did not support HEC-RAS Version 5.0.6 indicating that it lagged the current releases of HEC-RAS.

SUMMARY AND RECOMMENDATIONS

The ARBNM was demonstrated through the simulation of historical flood events to reasonably replicate observed results for an array of events. While complex due to the size of the ARB, it was possible to create AEP design floods using the HMR 52 procedures to create a catalog of design floods with a varying magnitude of cumulative precipitation to support design. Additionally the development of the ARB Consequence Model showed through the analysis of the August 2016 flood that it can reasonably estimate economic and life safety consequences using the results of the ARB HEC-RAS model. The ARBNM provides users with a without project conditions model that will enable apples to apples comparisons of project alternatives. The following recommendations are made for improvements to the ARBNM and for the LWI.

Recommendations for Improvements to the ARBNM

- 1. Future HEC-RAS Release Finite Volume 1D Computation Engine: It is recommended that upon formal or beta release of the future Finite Volume 1D computation engine for HEC-RAS 1D that LA DOTD perform thorough testing to ensure that it creates results that reasonably match those of the current ARBNM. The new Finite Volume Method engine is expected to provide improved stability and run times when compared to the existing finite difference 1D computation engine and will therefore make the ARBNM more efficient to utilize.
- 2. Future HEC-RAS Release Supporting Modeling of Bridges in 2D Flow Areas: It is understood that HEC-RAS Version 5.1 will enable users to code bridges within 2D Storage Area Connections. Currently HEC-RAS does not support the modeling of bridges within 2D Flow Areas and therefore Version 1.0 of the ARBNM simulates bridges within 2D Flow Areas as either multiple culverts representing bridge spans or slotted weirs within 2D Storage Area Connections. It is recommended that upon release of this feature within HEC-RAS that LA DOTD update the ARBNM to more accurately model bridges within 2D Flow Areas eliminating the need to model bridges as multiple culverts or slotted weirs.
- 3. **Rain-on-Grid Hydrology:** HEC-RAS version 5.0.6 supports rain-on-grid simulations within 2D Flow Areas, however, its capabilities are limited to applying only net runoff uniformly within a 2D Flow Area. Therefore it does not model infiltration losses as flow moves over the 2D mesh. It is understood that future releases of HEC-RAS will incorporate hydrologic processes into the HEC-RAS 2D Flow Area mesh enabling distributed losses to be performed. At this time, it is not recommended that rain-on-grid methodologies be used for the ARBNM, however, upon formal or beta release of improved rain-on-grid methodologies within HEC-RAS, it is recommended that LA DOTD perform testing of the methodology to determine its suitability for both the ARB and LWI. It is expected that rain-on-grid could provide significant value for urban modeling where watershed boundaries are complicated and subjective due to the unconfined nature of flooding. Example basins would include Bayou Manchac, Wards Creek, Clay Cut Bayou and Jones Creek to name a few.

- 4. **Stormwater and Flood Control Design Criteria for Local Communities:** While the ARBNM provides a catalog of storms suitable for analysis of flooding directly related to the Amite and Comite River's, it is recommended that that LA DOTD perform outreach to all local communities within the ARB to determine local design criteria for hydrologic and hydraulic design to better support their needs for assessing projects on smaller tributaries of the ARB. This may require utilizing the HEC-MetVue models to develop additional storms including the 4% AEP (25-year), 24-hr storm which is frequency used by local communities. Currently, when modeling tributaries independently, the 72-hr duration design storms will likely provide lower intensities than desired since the model has been optimized for the large Amite and Comite Rivers.
- 5. **Additional Storm Durations for Comite River:** It is recommended that additional storm durations be developed for the Comite River to represents its relatively shorter time of concentration. This has resulted in large precipitation depths to be required to achieve major floods along the Comite River. Storm durations of 24- and 48-hrs would likely provide added value.
- 6. **Updating of Hydrologic and Hydraulic Models with NLCD 2016 Data:** The 2016 NLCD is anticipated to be released sometime in 2019. This data will provide an improved representation of land use that can be used to refine HEC-HMS hydrologic parameters in addition to refining the application of HEC-RAS Manning's N values in 2D Flow Areas.
- 7. **Refinement of Models for Future Adoption by FEMA:** It is recommended to utilize the Cooperating Technical Partner (CTP) program funded by FEMA at LA DOTD to upgrade the ARBNM to enable the current flood risk to be mapped throughout the ARB through the future adoption of the models by FEMA. While the models likely represent a higher quality analysis than the effective models, additional detail and features specific to FEMA Guidelines and Specifications will enable them to be incorporated. This may include:
 - a) **Development of Regulatory Floodways for the Amite River and Comite River main channels:** It is recommended that through the Cooperating Technical Partner (CTP) program, LA DOTD coordinate with FEMA Region VI to define technical procedures acceptable to FEMA for the development of unsteady 1D and 2D floodplains within the ARB. Implementation of these procedures to develop a floodway will enable FEMA to adopt the ARBNM in areas where a regulatory floodway is already established, providing improved quality mapping for the local communities and additional stakeholders.
 - b) **Refined Detail in Medium Detail 2D Study Areas:** It is recommended that major tributaries to the Amite and Comite River's mapped by FEMA as a Zone AE flooding sources be upgraded to enable future adoption of the models by FEMA. While the models likely represent a higher quality analysis than the effective models, additional detail will enable them to meet FEMA Guidelines and Specifications. This may include:

- Refining land use polygons to include channel polygons allowing the N values to be refined to the channel portion
- Development of floodway simulations using previously
- Full detail survey of hydraulic structures to include survey grade elevations and incorporation into the HEC-RAS model.
- Incorporation of channel survey into the 2D mesh to enable true channel geometry to be simulated within HEC-RAS. This will be critical for the detailed modeling of culverts as 2D Storage Area Connections which require inverts to be higher than the adjacent 2D cells.
- Modeling of accredited levees that can be certified to show risk reduction from the 1% AEP flood event.
- 8. **HEC-FIA Structure Information:** While the current ARB Consequence Model produced reasonable estimations on the economic and life safety consequences for the August 2016 flood, further information should be researched and gathered for the existing structure attributes. The various components of the structures was gleaned from the NSI; however, this data has inherent issues given the source of the data. At the very least, information regarding the occupancy type and foundation height for each structure should be further investigated, as these attributes directly influence the building damage computation, critical in both the economic and life-loss simulations. Other attributes, such as building and content value, building height, and building occupancy are other critical attributes that can be improved with better information from parcel information.
- 9. **HEC-FIA Evacuation Information:** Currently national assumptions pertaining to evacuations are used for the ARB consequence model. Information such as warning times for evacuation have proven to have a high sensitivity for life loss estimated when using the ARB HEC-FIA consequence model. While often the release of this data is restricted, the collection and analysis of local Emergency Action Plans and Emergency Operation Plans from the local communities in the ARB would enable the national assumptions to be updated with more refined local data.
- 10. **HEC-LifeSim:** HEC-LifeSim is a relatively new program that provides a more advanced assessment of life safety than HEC-FIA. A key enhancements is the ability to simulate the evacuation of a population during a flood events. Documentation indicates that HEC-FIA models can be easily imported to HEC-LifeSim to enable the more advanced functions to be realized. It is recommended that HEC-LifeSim be considered as a future pilot study for the ARBNM to determine whether it would add value by providing local communities with a tool that can be used to inform flood response and evacuation plans.

REFERENCES

Berg, R. (2013). Tropical Cyclone Report – Hurricane Isaac (AL092012). National Hurricane Center. January 28, 2013.

Estimating Hydraulic Roughness Coefficients, Cowan, Agricultural Engineering, Vol. 37, no. 7, pp 473-475, July 1956

Fort Bend County, TX, Drainage Criteria Manual, Section 2.0 Hydrology, Online Source (as of February 2019) https://www.fortbendcountytx.gov/government/departments/county-services/drainage-district/drainage-criteria-manual

"Global Historical Climatology Network (GHCN)." National Climatic Data Center. NOAA, n.d. Web. 01 Aug. 2017.

Kocin, P., Schumacher, P., Morales, R., and Uccelini, L. (1994). Overview of the 12-14 March 1993 Superstorm. National Weather Service.

National Climatic Data Center. 2017. URL: http://www.ncdc.noaa.gov/nexradinv/chooseday.jsp?id=khnx

NOAA, Hydro Meteorological Report No. 52, Application of Probably Maximum Precipitation Estimates – United States East of the 105th Meridian, August 1982

NOAA. (2018). National Oceanic and Atmospheric Administration Tides and Currents -Station 8761927. Retrieved from: https://tidesandcurrents.noaa.gov/stationhome.html?id=8761927 [Accessed July 2018].

NOAA. Stage IV gridded precipitation data UCAR data server https://data.eol.ucar.edu/dataset/113.003

Nonstationarity Detection Tool. Vers. 1.1. Washington, D.C.: U.S. Army Corps of Engineers (USACE), Climate Preparedness and Resilience Community of Practice, 2017. Computer software.

Open-Channel Hydraulic, V.T. Chow, McGaw-Hill, 1959

Peak FQ. Vers. 7.1. Reston, VA: U.S. Geological Survey (USGS), Office of Surface Water, 2014. Computer software.

R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

SSURGO (Soil Survey Geographic database) Natural Resources Conservation Service (NRCS) - National Cartography and Geospatial Center (NCGC

Subcommittee on Hydrology of the Advisory Committee on Water Information, 2016. "Bulletin 17C, Guidelines for Determining Flood Flow Frequency".

U.S. Geological Survey 2001. The National Flood Frequency Program – Methods for Estimating Flood Magnitude and Frequency in Rural Areas in Louisiana, 2001.

U.S. Geological Survey, 2012, The StreamStats program, URL http://streamstats.usgs.gov.

University Corporation for Atmospheric Research data server (https://data.eol.ucar.edu/dataset/113.003)

URS. (2006). Mississippi River Reintroduction into Maurepas Swamp Project (PO-29). Volume IV of VII – Hydrologic Data. June 29, 2006.

USACE HEC_FIA Flood Impact Assessment, Version 3.1 Provisional, Computer software downloaded from https://www.hec.usace.army.mil/software/hec-fia/3.o downloads.aspx

USACE HEC-DSSVue, Data Storage System, Version 2.0.1, Computer software downloaded from https://www.hec.usace.army.mil/software/hec-dssvue/downloads.aspx

USACE HEC-HMS Hydrologic Modeling System, Version 4.2.1, Computer software downloaded from https://www.hec.usace.army.mil/software/hec-hms/downloads.aspx

USACE HEC-RAS River Analysis System, Version 5.0.6, Computer software downloaded from https://www.hec.usace.army.mil/software/hec-ras/downloads.aspx

USACE HEC-SSP Statistical Software Package. Vers. 2.1.1, Computer software downloaded from https://www.hec.usace.army.mil/software/hec-ssp/download.aspx

USACE HEC-WAT Watershed Assessment Tool, Version 1.0 Provisional, Computer software downloaded from https://www.hec.usace.army.mil/software/hec-wat

USACE, 2016. Engineering and Construction Bulletin No. 2016-25

USACE, HEC-GeoHMS, Version 10.0 for ArcGIS, Computer Software Downloaded from https://www.hec.usace.army.mil/software/hec-geohms/downloads.aspx

USACE, HEC-HMS Hydrologic Modeling System, Technical Reference Manual, March 2000.

USACE, HEC-HMS Hydrologic Modeling System, User's Manual, Version 4.2, August 2016

USACE, HEC-RAS River Analysis System, 2D Modeling User's Manual, Version 5.0, February 2016.

USACE, HEC-RAS River Analysis System, Hydraulic Reference Manual, Version 5.0, February 2016

USACE, HEC-RAS River Analysis System, Supplemental to HEC-RAS Version 5.0, User's Manual, Version 5.0.4, April 2018

USACE, HEC-RAS River Analysis System, User's Manual, Version 5.0, February 2016

USACE, HMR52 Probable Maximum Storm (Eastern United States) User's Manual. March 1984, Updated April 1987

USGS, Guidelines for Determining Flood Flow Frequencies, Bulletin #17B of the Hydrology Sub Committee, Revised September 1981

USGS, Guidelines for Determining Flood Flow Frequencies, Bulletin #17C, 2018

USGS, The National Flood-Frequency Program, Methods for Estimating Flood Magnitude and Frequency in Rural Areas in Louisiana, 2001

Utah State University, LIFESim: A model for estimating dam failure life loss, 2005

Wang, S. Y. S., Zhao, L., & Gillies, R. R. (2016). Synoptic and quantitative attributions of the extreme precipitation leading to the August 2016 Louisiana flood. Geophysical Research Letters, 43(22).

Woody L. Cowen, Estimating Hydraulic Roughness Coefficients, Agricultural Engineering, Volume 37, no. 7, pp 473-475, July 1956

APPENDIX 1: HEC-HMS MODEL PARAMETER SUMMARY

HEC-HMS Model Parameter Summary

HEC-HMS Subbasin				Green a	and Ampt Loss	Parameters			Mod Clark Trai	nsform Parameters
	Drainage Area (sq mi)	Initial Content	Saturated Content	Suction (in)	Conductivity (in/hr)	Impervious % 2011 NLCD	Impervious % 2030 ICLUS	Impervious % 2050 ICLUS	Time of Concentration (hr)	Storage Coefficient (hr)
AllenByu_HWY1032	2.5	0.24	0.34	6.55	0.042	9.3	15.0	15.0	3.2	9.1
AlligatorT_Bluff	3.5	0.25	0.35	6.99	0.034	17.3	19.0	24.9	2.0	5.5
AmiteDivCnl_C01	18.5	0.21	0.29	11.09	0.008	0.0	0.1	0.1	0.1	73.0
AmiteDivCnl_C02	8.3	0.19	0.26	10.59	0.012	0.1	0.1	0.1	0.1	36.8
AmiteDivC_HWY22	11.1	0.19	0.27	8.42	0.026	2.0	2.5	2.7	2.1	18.9
AmiteRT34_HWY16	0.4	0.23	0.32	6.12	0.048	15.3	15.3	19.3	1.8	3.9
AmiteR_BarbByu	19.8	0.24	0.34	7.59	0.037	0.4	0.4	0.4	3.1	16.8
AmiteR_BeaverCrk	9.2	0.24	0.33	6.45	0.043	0.1	0.1	0.1	7.4	9.4
AmiteR_BluffCrk	7.0	0.22	0.31	7.29	0.082	0.5	0.5	0.5	6.3	6.8
AmiteR_ChaneyBr	1.1	0.27	0.38	8.4	0.018	1.8	1.8	1.8	3.5	4.7
AmiteR_ChinqCan	7.4	0.24	0.33	8.23	0.027	1.5	1.7	2.1	4.6	24.5
AmiteR_ClearCrk	5.9	0.24	0.34	5.51	0.056	0.5	0.5	0.5	6.0	5.6
AmiteR_ColBay	1.8	0.2	0.29	6.96	0.025	1.0	1.2	1.4	2.1	7.0
AmiteR_C01	4.5	0.23	0.32	6.31	0.041	0.3	0.4	0.5	3.4	12.9
AmiteR_C02	4.5	0.21	0.3	5.91	0.038	1.3	1.6	1.9	3.5	11.2

A1-2 Anite River Basin Numerical Model

Table A1-1: HEC-HMS M	odel Paramet	er Summa	ry							
AmiteR_C03	4.5	0.23	0.32	6.22	0.046	0.4	0.5	0.6	7.3	15.9
AmiteR_C04	2.4	0.22	0.32	6.18	0.039	3.6	4.7	5.7	2.8	3.9
AmiteR_C05	3.4	0.23	0.32	6.25	0.047	3.8	5.4	7.3	6.4	14.9
AmiteR_C06	1.2	0.23	0.33	6.76	0.032	6.7	13.5	16.2	2.9	4.2
AmiteR_C07	0.8	0.23	0.32	6.32	0.041	4.3	5.6	6.8	1.9	3.3
AmiteR_C08	1.1	0.23	0.33	6.31	0.041	16.7	23.4	30.1	2.4	3.0
AmiteR_C09	1.6	0.23	0.32	6.31	0.054	2.1	2.6	2.7	3.1	5.0
AmiteR_C10	2.2	0.23	0.32	6.3	0.041	8.3	10.0	11.7	2.8	4.4
AmiteR_C11	2.8	0.25	0.35	7.42	0.03	9.3	11.8	16.3	3.4	12.0
AmiteR_C12	2.9	0.23	0.32	6.43	0.041	9.5	9.5	15.5	3.0	4.6
AmiteR_C13	3.1	0.22	0.31	6.21	0.04	2.9	4.2	4.9	4.4	7.2
AmiteR_C14	3.8	0.23	0.32	6.31	0.053	0.6	0.7	0.9	3.9	6.9
AmiteR_C15	4.2	0.24	0.34	7.04	0.029	1.7	2.0	2.6	4.6	9.6
AmiteR_DarlingCrk	13.2	0.24	0.33	6.45	0.049	0.4	0.4	0.4	7.7	8.3
AmiteR_HendByu	1.2	0.16	0.22	8.77	0.02	3.7	5.0	5.8	2.5	6.6
AmiteR_HWY16	6.0	0.21	0.3	9.06	0.021	1.4	1.5	1.5	3.3	24.1
AmiteR_HWY22	12.1	0.25	0.35	8.87	0.027	0.6	0.7	0.7	1.8	32.6
AmiteR_KingGByu	18.7	0.24	0.34	8.88	0.027	0.9	1.0	1.0	4.4	48.6

Table A1-1: HEC-HMS Mod	del Paramet	er Summa	ry							
AmiteR_L03	0.8	0.24	0.34	6.37	0.041	21.7	31.6	34.0	1.3	1.6
AmiteR_Magnolia	1.9	0.24	0.34	7.03	0.06	8.4	10.3	13.0	2.6	3.7
AmiteR_Maurepas	12.0	0.26	0.36	10.43	0.016	0.7	0.7	0.7	2.5	65.7
AmiteR_PigeonCrk	16.9	0.21	0.3	7.73	0.06	0.4	0.4	0.4	8.2	12.0
AmiteR_PtVincent	5.6	0.21	0.29	6.27	0.033	2.0	2.4	2.4	3.0	16.6
AmiteR_RockyCrk	23.6	0.21	0.3	7.45	0.055	0.3	0.3	0.3	7.9	9.6
AmiteR_R03	1.4	0.26	0.36	6.85	0.039	25.7	36.2	36.2	1.7	2.8
AmiteR_StateHwy10	14.6	0.21	0.3	6.58	0.047	0.3	0.3	0.3	6.6	6.5
AmiteR_StateHwy37	15.0	0.2	0.28	7.2	0.06	0.5	0.5	0.5	7.9	9.8
AmiteR_StateHwy432	2.5	0.22	0.31	6.58	0.041	0.2	0.2	0.2	3.9	2.6
AmiteR_US_Div	0.4	0.04	0.05	3.77	0.004	1.7	2.0	2.0	14.5	52.8
AmiteR_WhittenCrk	16.7	0.23	0.32	7.2	0.052	0.5	0.5	0.5	7.5	10.7
AmiteR_17	3.4	0.24	0.34	6.86	0.06	0.8	0.9	0.9	5.2	7.2
AmiteR_18	1.9	0.26	0.37	7.4	0.033	0.6	0.7	0.7	4.1	5.3
AntiochC_LeeMrtn	4.0	0.25	0.35	6.56	0.042	0.6	0.7	0.9	3.1	8.2
BeaverBr_CnMkt	0.7	0.23	0.32	6.55	0.042	8.3	8.4	9.1	3.0	7.7
BeaverBr_DuffRd	2.4	0.23	0.32	6.55	0.042	2.2	3.5	4.0	2.4	7.9
BeaverBr_RR	3.3	0.23	0.32	6.55	0.042	3.9	5.3	6.2	2.9	6.0

A1-4 Anite River Basin Numerical Model

Table A1-1: HEC-HMS Mo	del Paramet	er Summa	ry							
BeaverByuNP_Hoop	1.3	0.23	0.33	6.53	0.041	11.0	12.8	14.4	3.4	7.8
BeaverByuNP_US	0.4	0.22	0.31	6.56	0.042	8.3	18.6	18.6	2.4	4.8
BeaverByu_Denham	1.2	0.22	0.31	6.56	0.041	1.3	1.3	1.5	4.0	7.3
BeaverByu_French	0.8	0.25	0.35	6.94	0.036	6.8	8.4	9.4	3.4	5.0
BeaverByu_GrnSp	1.8	0.24	0.33	6.51	0.04	16.4	16.4	16.4	2.4	4.9
BeaverByu_Hooper	4.3	0.22	0.31	6.52	0.041	3.5	4.5	5.6	3.1	7.8
BeaverByu_US_LOC	0.6	0.23	0.32	6.57	0.041	1.3	1.5	1.6	2.4	5.5
BeaverByu_Wax	2.2	0.23	0.32	6.55	0.039	7.0	8.1	8.7	2.3	7.6
BeaverCrk_01	39.2	0.28	0.39	6.12	0.049	0.9	0.9	0.9	8.0	10.8
BeaverCrk_02	44.8	0.27	0.38	6.18	0.048	0.3	0.3	0.3	8.2	10.8
BeaverCrk_03	16.7	0.27	0.38	5.98	0.05	0.2	0.2	0.2	7.3	8.9
BeaverCrk_04	2.9	0.26	0.37	6.21	0.046	0.2	0.2	0.2	4.1	2.9
BeaverCrk_05	3.0	0.24	0.34	6.12	0.047	0.2	0.2	0.2	3.7	2.6
BeaverCrk_06	0.5	0.22	0.3	6.21	0.041	0.1	0.1	0.1	3.5	2.7
BeaverCrk_07	0.6	0.22	0.31	6.35	0.041	0.2	0.2	0.2	2.7	7.3
BeaverC2_CnMkt	2.5	0.22	0.32	6.55	0.042	7.5	7.5	8.6	2.8	7.7
BeaverC2_ForeRd	0.7	0.22	0.32	6.57	0.042	4.3	6.1	6.1	2.6	7.3
BeaverC2_HWY16	1.3	0.23	0.32	6.44	0.043	13.0	16.8	19.1	2.6	4.2

Table A1-1: HEC-HMS Mo	odel Paramete	er Summai	ry							
BeaverC2_Magnol	0.7	0.23	0.33	6.47	0.043	16.8	16.8	23.2	1.7	1.9
BeaverC2_Sprgfld	1.2	0.23	0.32	6.56	0.042	18.0	25.5	29.0	1.9	4.7
BeaverC3_DS_Pear	1.1	0.22	0.31	7.22	0.041	0.4	0.5	0.5	2.8	5.4
BeaverC3_Jackson	1.0	0.25	0.36	7.31	0.042	0.7	0.8	0.8	2.4	2.6
BeaverC3_LSandy	2.0	0.23	0.32	7.02	0.042	0.1	0.2	0.2	3.7	5.9
BeaverC3_Milldal	2.1	0.25	0.35	6.75	0.042	0.5	0.6	0.6	3.1	4.6
BeaverC3_Peairs	2.0	0.23	0.32	6.85	0.042	0.3	0.3	0.4	4.4	8.1
BeaverC3_US_LOC	0.2	0.25	0.35	7.03	0.042	1.0	1.0	1.0	1.7	1.9
BeaverPondByu_DS	1.9	0.23	0.32	6.44	0.039	0.2	0.2	0.2	4.6	9.5
BeaverPondByu_US	4.4	0.25	0.35	6.56	0.041	0.1	0.2	0.2	4.9	8.3
BFountainNP	0.8	0.23	0.33	6.79	0.039	21.4	21.4	23.4	1.4	1.7
BFountNBr_Boyd	0.2	0.3	0.42	11.83	0.011	60.8	60.8	60.8	0.4	0.3
BFountNBr_Lee	0.5	0.24	0.33	11.34	0.015	25.6	27.2	29.2	0.9	3.2
BFountSBr_BF	0.8	0.2	0.29	12.02	0.009	9.9	11.4	11.4	2.3	2.4
BFountSBr_Gour	0.4	0.23	0.32	12.27	0.008	23.1	23.5	24.0	2.1	1.8
BFountSBr_US	0.2	0.31	0.44	10.21	0.02	42.9	44.4	45.1	1.1	1.3
BFountT1_DS	1.1	0.22	0.32	7.22	0.035	11.8	14.2	19.6	1.8	2.7
BFountT1_HighInd	1.0	0.24	0.34	6.66	0.041	31.7	31.9	35.4	1.0	1.5

A1-6 | Amite River Basin Numerical Model

Table A1-1: HEC-HMS M	odel Paramet	er Summa	ry							
BFount_BFSBr	0.3	0.2	0.28	12.41	0.007	39.9	39.9	39.9	1.3	2.4
BFount_Bluebon	4.0	0.21	0.29	8.42	0.034	23.6	25.8	27.9	2.0	7.5
BFount_Burbank	0.2	0.27	0.39	12.14	0.009	24.9	30.3	32.6	1.1	1.5
BFount_BurbankDr	4.2	0.22	0.31	7.58	0.034	27.5	32.2	32.9	2.2	4.7
BFount_ByuManch	2.0	0.19	0.26	11.15	0.015	4.6	5.8	6.8	2.1	17.7
BFount_ElbowByu	1.8	0.17	0.23	11.01	0.016	19.6	26.7	30.4	4.1	9.0
BFount_Nich_DS	0.8	0.15	0.22	12.2	0.01	23.0	27.2	27.2	1.8	6.8
BFount_Nich_US	0.3	0.34	0.48	11.96	0.01	62.6	62.6	62.6	0.4	0.3
BFount_US_Trib	9.0	0.17	0.23	10.49	0.02	3.7	5.1	6.4	5.5	14.7
BirchCrk_01	1.0	0.25	0.35	4.72	0.069	1.2	1.2	1.2	2.3	1.1
BlackCrk_01	0.4	0.25	0.35	4.93	0.066	0.0	0.1	0.1	2.4	1.6
BlackCrk_02	0.3	0.2	0.29	6.39	0.048	0.2	0.2	0.2	1.9	1.1
BlackCrk_03	0.7	0.25	0.35	5.18	0.062	0.5	0.5	0.5	2.2	1.2
BlackCrk_04	0.9	0.25	0.35	4.94	0.065	0.8	0.8	0.8	2.6	1.7
BlackCrk_05	0.7	0.23	0.32	5.6	0.057	0.1	0.1	0.1	2.5	1.6
BlackCrk_06	0.2	0.21	0.3	6.62	0.043	0.4	0.4	0.4	2.1	1.1
BlackCrk_07	1.0	0.21	0.29	6.42	0.046	0.1	0.1	0.1	3.3	2.3
BlackCrk_08	0.2	0.24	0.33	6.04	0.05	1.7	1.7	1.7	1.5	0.7

Table A1-1: HEC-HMS Mo	del Paramete	er Summai	гу							
BlackCrk_09	1.3	0.24	0.33	5.71	0.058	1.0	1.0	1.0	3.2	2.0
BLACKCR_CMB	0.2	0.26	0.37	6.45	0.041	0.1	0.1	0.1	2.0	2.7
BLACKCR_HWY412	2.8	0.26	0.36	6.55	0.042	0.1	0.1	0.1	4.5	7.8
BlackwtrBT1_BB	3.5	0.23	0.33	6.55	0.042	7.0	8.3	9.4	3.5	9.8
BlackwtrBT1_Core	1.3	0.23	0.32	6.57	0.042	1.5	2.4	2.4	2.3	4.1
BlackwtrBT1_Mcul	0.9	0.22	0.31	6.55	0.041	1.2	1.6	1.6	2.0	5.0
BlackwtrBT2_BB	0.8	0.23	0.32	6.53	0.042	1.7	2.1	2.1	2.3	6.7
BlackwtrBT2_DW	0.6	0.23	0.32	6.56	0.042	1.3	1.3	1.5	2.1	5.2
BlackwtrBT3_US	0.8	0.23	0.32	6.46	0.043	1.6	2.1	2.1	2.4	5.8
BlackwtrB_BBT1	1.7	0.23	0.32	6.59	0.041	1.3	1.8	1.9	3.1	5.8
BlackwtrB_BBT2	1.4	0.22	0.31	6.56	0.042	1.3	1.3	1.5	2.9	6.9
BlackwtrB_Comite	2.1	0.23	0.33	6.57	0.041	10.0	11.9	12.7	3.1	4.8
BlackwtrB_McCull	0.7	0.22	0.31	6.56	0.042	0.8	1.0	1.0	2.4	4.8
BlackwtrB_US	0.6	0.22	0.31	6.48	0.041	0.3	0.3	0.4	2.5	5.2
BlackwtrT3_DS	0.3	0.22	0.31	6.53	0.043	1.7	2.1	2.1	2.0	4.1
BluffCrk_AmiteR	1.8	0.23	0.32	6.54	0.044	0.3	0.3	0.3	5.3	5.3
BluffCrk_01	1.2	0.24	0.33	6.85	0.039	0.3	0.3	0.3	2.4	1.5
BluffCrk_02	1.4	0.22	0.31	7.15	0.037	0.2	0.2	0.2	2.9	2.0

A1-8 | Amite River Basin Numerical Model

Table A1-1: HEC-HMS Mo	del Paramet	er Summa	ry							
BluffCrk_03	1.6	0.19	0.27	7.63	0.033	0.3	0.3	0.3	3.6	2.7
BluffCrk_04	2.1	0.2	0.28	7.43	0.035	0.1	0.1	0.1	4.2	3.8
BluffCrk_05	2.9	0.2	0.28	7.41	0.035	0.1	0.1	0.1	4.3	3.9
BluffCrk_06	5.0	0.2	0.28	7.36	0.035	0.3	0.3	0.3	5.8	6.6
BluffCrk_07	5.8	0.21	0.3	7.22	0.036	0.3	0.3	0.3	5.1	5.7
BluffSwamp_Gage	0.7	0.23	0.32	7.92	0.027	22.6	35.8	35.8	1.7	2.3
ByuBraud_HWY30	2.3	0.13	0.19	10.83	0.019	12.5	12.5	12.5	2.5	4.3
ByuBraud_HWY74	3.4	0.11	0.15	12.24	0.01	11.9	11.9	11.9	4.2	10.1
ByuBraud_US_LOC	9.6	0.18	0.25	10.15	0.029	6.1	6.1	6.1	5.4	14.4
ByuDuplant_LeeDr	0.7	0.28	0.39	8.81	0.025	18.3	20.4	22.7	1.3	1.4
ByuDuplant_NrDaw	2.4	0.26	0.37	8.13	0.03	16.6	21.6	23.5	1.8	3.9
ByuManch_Airline	1.0	0.21	0.3	6.76	0.038	24.3	26.0	43.5	1.6	2.7
ByuManch_BFount	0.0	0.19	0.27	9.48	0.022	6.3	7.8	9.0	1.0	1.0
ByuManch_Cotton	2.0	0.22	0.32	6.44	0.039	2.8	3.7	4.5	2.5	4.1
ByuManch_Gator	0.1	0.19	0.27	10.69	0.029	7.8	9.1	9.7	2.8	15.4
ByuManch_NrAmite	1.2	0.22	0.31	6.85	0.04	4.3	4.3	4.3	2.9	5.8
ByuManch_NrLiPra	1.8	0.23	0.32	6.46	0.04	2.2	2.9	3.5	3.2	7.1
ByuManch_NrMSRiv	1.4	0.2	0.28	8.28	0.034	11.1	12.9	12.9	3.3	5.3

Table A1-1: HEC-HMS Model Parameter Summary										
ByuManch_Perkins	1.5	0.23	0.32	6.43	0.036	22.7	31.3	35.9	1.6	2.1
ByuManch_Welsh	2.0	0.21	0.3	6.41	0.039	18.4	20.9	23.9	2.2	3.6
ByuPaul_HWY30	1.4	0.18	0.25	10.75	0.034	1.3	1.3	1.3	3.2	4.1
ByuPaul_US_HWY30	3.7	0.16	0.23	10.67	0.028	2.3	2.3	2.3	5.2	11.1
ByuPaul_US_LOC	4.3	0.16	0.23	11.38	0.023	2.2	2.2	2.2	3.0	10.4
CampCreek_HWY42	7.4	0.24	0.34	6.69	0.042	0.5	0.5	0.6	1.9	10.3
ChaneyBr_HWY16	1.9	0.23	0.32	6.49	0.041	1.1	1.1	1.1	3.7	9.2
ChinqCan_C01	12.1	0.26	0.37	10.85	0.015	0.4	0.4	0.4	1.8	42.3
ChinqCan_C02	14.0	0.25	0.35	9.94	0.018	2.2	2.2	2.2	3.5	18.0
ClayCut_Airline	1.2	0.3	0.43	9.34	0.025	55.6	60.1	74.4	0.5	0.7
ClayCut_AntiochR	2.5	0.24	0.33	6.9	0.041	32.4	39.7	41.6	1.3	1.8
ClayCut_CalRd	0.6	0.26	0.37	7.56	0.036	38.2	39.5	41.5	0.7	1.0
ClayCut_Inns	0.2	0.24	0.34	6.64	0.041	41.2	66.4	66.4	0.5	0.5
ClayCut_JacksB	1.3	0.27	0.38	7.92	0.034	38.4	43.3	49.4	0.9	1.4
ClayCut_NrAmite	3.1	0.23	0.33	6.4	0.041	4.2	6.0	8.1	2.8	5.3
ClayCut_Siegen	0.6	0.28	0.4	8.36	0.031	53.8	78.3	87.8	0.6	0.6
ClayCut_US_Tiger	4.7	0.24	0.34	6.85	0.041	14.0	14.0	15.6	2.7	4.7
ClaytonByuT1	0.5	0.23	0.32	6.54	0.043	2.1	3.3	4.0	2.3	2.8

Table A1-1: HEC-HMS M	odel Paramet	er Summa	ry							
ClaytonByu_Bend	0.8	0.22	0.31	6.4	0.044	7.6	7.6	10.4	3.0	3.9
ClearCrkT1_01	0.4	0.25	0.35	6.56	0.042	0.2	0.2	0.2	1.3	0.5
ClearCrkT1_02	1.0	0.25	0.34	6.55	0.042	0.0	0.1	0.1	3.2	2.1
ClearCrk_01	1.7	0.25	0.36	6.32	0.046	0.2	0.2	0.2	3.2	1.9
ClearCrk_02	2.4	0.25	0.35	6.39	0.044	0.4	0.4	0.4	3.8	2.7
ClearCrk_03	0.7	0.23	0.32	6.54	0.04	0.8	0.8	0.8	2.6	1.3
ClearCrk_04	1.8	0.24	0.34	6.55	0.042	0.3	0.3	0.3	4.4	3.3
ClintonAllenLat	2.7	0.23	0.32	6.54	0.042	5.2	6.8	8.7	3.5	7.4
ClyellCrkNP	1.9	0.24	0.34	6.54	0.042	0.3	0.4	0.5	2.4	7.6
ClyellT9_DS_FL	0.7	0.26	0.36	6.57	0.042	1.1	1.4	1.6	1.6	3.5
ClyellT9_FL	1.2	0.26	0.36	6.56	0.042	1.4	1.8	2.3	1.9	7.1
Clyell_CB	5.3	0.24	0.34	7.03	0.039	0.9	1.1	1.3	2.2	11.7
Clyell_DS_I12	2.8	0.25	0.35	6.55	0.042	1.1	1.4	1.6	2.0	5.8
Clyell_DS_LigoLn	2.7	0.22	0.31	6.51	0.043	0.9	1.3	1.5	2.6	8.7
Clyell_FLBlvd	3.6	0.25	0.35	6.56	0.042	1.0	1.5	2.0	2.4	7.1
Clyell_I12	2.1	0.24	0.34	6.56	0.042	1.3	1.8	2.4	2.3	4.5
Clyell_JoelWatts	5.3	0.24	0.34	6.56	0.042	0.7	0.9	1.0	2.9	7.8
Clyell_LigoLn	4.5	0.24	0.34	6.54	0.042	0.7	0.9	1.1	2.5	8.9

Table A1-1: HEC-HMS Mo	del Paramet	er Summa	ry							
Clyell_LilClyell	2.1	0.24	0.34	6.57	0.042	0.6	0.6	0.7	2.2	4.6
Clyell_LodStafrd	4.5	0.23	0.33	6.48	0.041	0.6	0.7	0.9	3.0	8.3
Clyell_US_LOC	1.1	0.24	0.33	6.57	0.042	0.5	0.6	0.6	1.8	4.4
Clyell_W_Hood	4.2	0.24	0.34	6.57	0.042	0.7	0.7	0.8	3.1	10.6
ColtonCrk_HWY16	3.8	0.23	0.32	6.39	0.041	11.9	13.6	16.0	3.2	5.7
ColyellBay	8.1	0.24	0.33	7.41	0.037	0.9	1.1	1.2	2.7	22.3
COMITE_atComite	2.5	0.22	0.31	7	0.088	0.9	1.1	1.1	3.8	7.0
COMITE_Baker	8.0	0.23	0.33	6.76	0.071	1.4	1.5	1.7	4.6	10.0
COMITE_DenhamSpr	2.2	0.25	0.34	6.47	0.055	9.5	11.6	12.0	3.0	5.2
COMITE_dsJOORRD	0.5	0.25	0.35	7.17	0.036	2.4	2.4	2.4	1.7	1.3
COMITE_dsLA37	1.6	0.23	0.32	6.43	0.044	10.4	11.8	13.8	2.6	3.7
COMITE_DS_OB	0.2	0.22	0.31	5.98	0.084	3.6	3.6	3.6	1.8	1.2
COMITE_HooperRd	2.2	0.24	0.34	6.76	0.058	7.7	9.6	9.6	4.0	5.8
COMITE_Hurricane	1.0	0.23	0.32	6.55	0.039	6.7	8.0	9.5	2.4	3.0
COMITE_nrComite	1.3	0.26	0.37	7.74	0.053	2.9	3.2	3.3	4.2	5.4
COMITE_RR	2.2	0.23	0.32	6.43	0.055	1.9	2.6	3.7	3.7	5.4
COMITE_usLA37	1.4	0.25	0.36	7.23	0.032	9.5	11.2	14.1	2.3	2.7
COMITE_US_OB	0.2	0.22	0.3	6.17	0.039	0.9	0.9	0.9	1.4	0.7

Table A1-1: HEC-HMS M	odel Paramet	er Summa	ry							
COMITE_Zachary	5.7	0.23	0.32	6.48	0.056	1.0	1.1	1.2	4.6	9.2
CooperMillB_BC	0.9	0.26	0.36	6.5	0.041	0.6	0.6	0.6	2.9	4.1
CooperMillB_Midw	0.4	0.24	0.34	6.55	0.042	2.7	2.7	2.7	1.9	2.5
CooperMillB_UWB	0.6	0.22	0.31	6.07	0.038	0.3	0.4	0.6	2.4	4.8
CorpCanalNP	0.6	0.3	0.42	10.32	0.018	47.2	47.2	47.2	1.2	1.6
CorpCanal_Myrtle	0.8	0.32	0.45	9.55	0.023	61.2	76.1	76.1	0.5	0.6
CorpCanal_Stanfrd	0.6	0.34	0.48	10.42	0.013	39.2	41.6	44.5	0.8	0.9
CorpCanal_State	1.0	0.33	0.46	10.23	0.017	48.4	51.7	51.7	0.9	1.0
DarlingCrk_AmiteR	3.5	0.2	0.29	7.95	0.041	0.6	0.6	0.6	4.7	5.9
DarlingCrk_01	1.3	0.25	0.35	5.29	0.062	0.4	0.4	0.4	3.3	2.5
DarlingCrk_02	0.8	0.25	0.34	4.84	0.066	0.3	0.3	0.3	2.2	1.3
DarlingCrk_03	0.5	0.25	0.35	4.89	0.066	0.5	0.5	0.5	1.9	0.8
DarlingCrk_04	0.2	0.24	0.34	5.42	0.059	0.2	0.2	0.2	1.6	0.6
DarlingCrk_05	0.5	0.24	0.34	5.44	0.058	0.4	0.4	0.4	2.2	1.2
DarlingCrk_06	1.0	0.24	0.34	6.25	0.059	0.2	0.2	0.2	3.7	2.5
DarlingCrk_07	10.1	0.24	0.34	5.23	0.063	0.3	0.3	0.3	5.8	6.3
DarlingCrk_08	3.3	0.23	0.33	5.45	0.059	0.4	0.4	0.4	3.9	2.6
 DarlingCrk_09	2.0	0.22	0.3	5.81	0.054	0.7	0.7	0.7	3.8	2.8

Table A1-1: HEC-HMS Mo	del Paramet	er Summa	гу							
DarlingCrk_10	1.2	0.23	0.33	5.5	0.057	0.8	0.8	0.8	4.0	3.4
DarlingCrk_11	0.8	0.19	0.27	7.02	0.043	0.4	0.4	0.4	2.4	1.5
DarlingCrk_12	0.8	0.19	0.26	8.12	0.036	0.3	0.3	0.3	2.6	1.8
DarlingCrk_13	0.8	0.2	0.28	7.58	0.041	1.2	1.2	1.2	3.2	2.7
DawsonCr_Bluebon	2.6	0.27	0.38	7.97	0.032	32.6	35.6	38.0	1.5	2.8
DawsonCr_College	1.5	0.3	0.42	9.13	0.026	36.1	39.2	41.7	0.9	0.9
DawsonCr_GovtSt	1.3	0.3	0.42	9.04	0.027	49.4	51.0	54.2	0.7	1.0
DawsonCr_Hund_DS	0.9	0.28	0.4	8.35	0.03	27.3	29.5	31.9	1.3	1.5
DawsonCr_QuailDr	1.4	0.27	0.38	8.23	0.032	30.7	35.3	37.4	1.2	1.7
DawsonCr_WardCr	1.0	0.28	0.4	8.49	0.03	41.5	46.8	57.5	1.1	1.6
DraughnsC_French	2.5	0.24	0.34	6.57	0.037	7.1	9.2	10.1	3.0	4.9
DraughnsC_GrnSpr	2.4	0.23	0.32	6.55	0.041	8.1	9.4	12.2	2.4	5.4
DraughnsC_MagBr	1.0	0.22	0.32	6.56	0.041	10.6	11.1	11.7	2.7	8.3
DuffByu_Jackson	1.5	0.23	0.33	6.64	0.042	1.1	1.1	1.5	3.3	4.0
DuffByu_PtHud	0.5	0.26	0.36	6.58	0.042	0.0	0.1	0.1	2.1	2.0
DuffB_DS_Jack	0.4	0.24	0.33	6.58	0.04	0.5	0.6	0.6	1.8	1.8
DumplinC_DS_RR	0.5	0.24	0.34	6.57	0.042	22.4	29.8	38.7	0.9	1.4
DumplinC_I12	1.1	0.23	0.33	6.46	0.041	13.9	13.9	20.6	1.6	2.7

Table A1-1: HEC-HMS Mod	lel Paramet	er Summa	ry							
DumplinC_RR	0.8	0.22	0.31	6.53	0.042	7.7	12.6	15.2	1.7	3.9
DumplinC_US_LOC	1.0	0.22	0.31	6.55	0.042	6.9	13.4	15.0	1.6	4.8
DunnCrk_01	0.6	0.26	0.36	6.65	0.043	0.0	0.1	0.1	1.7	0.9
DunnCrk_02	0.8	0.23	0.32	6.9	0.041	0.0	0.1	0.1	2.4	1.5
DunnCrk_03	1.8	0.26	0.36	5.59	0.055	0.5	0.5	0.5	3.7	2.7
DunnCrk_04	0.5	0.25	0.36	5.57	0.055	0.2	0.2	0.2	3.5	2.1
EastForkAmite_01	38.9	0.25	0.35	6.43	0.043	0.6	0.6	0.6	8.9	16.5
EastForkAmite_02	46.8	0.27	0.38	6.16	0.048	0.5	0.5	0.5	9.6	14.8
EastForkAmite_03	95.7	0.26	0.37	5.83	0.053	0.4	0.4	0.4	11.7	19.7
EastForkAmite_04	55.2	0.26	0.37	5.87	0.051	0.3	0.3	0.3	11.5	18.3
EFDumplin_Corbin	0.2	0.22	0.31	6.55	0.042	1.3	1.7	2.5	1.0	3.5
EFDumplin_RR	0.9	0.23	0.32	6.52	0.042	13.0	16.9	21.3	1.6	3.6
ELatCypB_Lavey	0.4	0.26	0.37	6.57	0.042	20.7	24.3	30.6	1.1	1.7
ELatCypB_LCB	0.8	0.23	0.33	6.63	0.041	16.3	16.3	19.6	2.0	3.1
ElbowBayou	6.1	0.14	0.2	10.91	0.015	3.6	3.6	4.8	4.6	13.7
ElbowByu_Burbank	5.7	0.18	0.25	10.33	0.022	3.0	4.1	5.9	2.6	16.9
ENGINEERDEPOT_DS	1.4	0.25	0.35	6.73	0.041	27.2	27.3	29.5	1.8	3.3
ENGINEERDEPOT_US	0.8	0.28	0.39	7.8	0.034	41.3	54.2	54.2	1.0	1.7

Table A1-1: HEC-HMS Mo	odel Paramete	er Summai	гу							
FeldersB_BrownRd	0.6	0.25	0.35	6.57	0.042	0.8	0.9	1.3	1.9	6.0
FeldersB_DSJMay	0.9	0.24	0.34	6.6	0.042	3.2	4.5	6.3	1.4	2.5
FeldersB_WC	1.1	0.23	0.33	7.18	0.042	8.8	8.8	11.4	1.7	3.8
FlanaganByu_SC	0.5	0.24	0.33	6.62	0.042	0.4	0.4	0.5	2.2	2.9
FlanaganByu_01	2.0	0.24	0.34	7.33	0.041	0.1	0.1	0.1	2.6	2.5
FlatLake	4.0	0.15	0.22	9.86	0.014	0.7	0.8	0.9	3.5	20.6
GatorByu_Gage	0.2	0.17	0.24	9.64	0.019	2.3	3.3	4.9	2.8	5.2
GatorByu_USGage	36.0	0.14	0.2	11.21	0.015	4.0	4.5	5.5	6.7	27.7
GraysCrkBr_BMcD	0.4	0.25	0.36	6.55	0.042	21.0	21.0	24.3	1.2	2.4
GraysCrkBr_Dunn	0.4	0.24	0.34	6.3	0.046	14.5	16.5	16.5	1.2	1.8
GraysCrkBr_I12	0.8	0.24	0.33	6.57	0.042	5.0	5.1	6.3	1.9	6.1
GraysCrkBr_RR	0.5	0.25	0.36	6.45	0.041	16.7	20.9	25.2	1.1	2.4
GraysCrkBr_USI12	0.6	0.24	0.34	6.57	0.042	11.5	13.8	19.5	1.9	3.9
GraysCrkLat_RR	0.7	0.23	0.33	6.45	0.043	24.4	31.7	39.5	1.4	2.6
GraysCrk_Hwy1033	4.7	0.24	0.34	6.49	0.043	2.6	3.5	4.1	3.3	11.1
GraysCrk_HWY16	1.6	0.25	0.35	6.52	0.042	8.5	13.3	14.9	2.7	6.7
GraysCrk_I12	1.2	0.24	0.34	6.57	0.042	18.6	18.9	26.1	2.0	5.0
GraysCrk_Julban	2.1	0.22	0.31	5.83	0.037	10.0	12.5	14.4	2.5	8.8

Table A1-1: HEC-HMS Mo	odel Paramet	er Summa	ry							
GraysCrk_NrAmite	5.5	0.24	0.34	6.53	0.042	1.8	2.4	2.4	4.0	12.0
GraysCrk_RR	0.7	0.24	0.34	6.56	0.042	21.0	21.0	23.5	1.6	3.2
GraysCrk_US	0.4	0.25	0.35	6.55	0.042	24.2	31.2	37.5	0.9	1.1
GraysCrk_WaxD	0.7	0.24	0.33	6.57	0.042	17.5	18.2	23.4	1.5	2.6
HannaC_PrideBar	1.5	0.21	0.3	7.19	0.037	0.1	0.1	0.1	3.0	3.1
HareLat_Airline	0.9	0.26	0.37	7.5	0.036	39.1	43.8	46.5	0.8	1.1
HareLat_OldHmd	0.3	0.26	0.37	7.32	0.034	41.5	45.6	47.4	0.5	0.4
HendByu_DSPtVinc	3.8	0.24	0.34	6.82	0.032	3.6	4.9	5.7	2.8	10.8
HendByu_HWY431	4.2	0.22	0.31	7.93	0.029	2.4	2.6	3.2	2.6	8.4
HendByu_Joboy	0.4	0.24	0.33	6.57	0.042	19.6	25.6	25.6	1.0	2.3
HendByu_NrPtVinc	3.4	0.24	0.34	6.52	0.039	10.5	10.8	11.8	2.0	9.8
HendByu_US_Timbr	1.7	0.24	0.34	6.57	0.036	9.1	9.5	12.0	1.9	4.7
HogBayou_BC	1.0	0.26	0.37	6.53	0.042	0.0	0.1	0.1	3.6	7.0
HoneyCut_East	1.1	0.26	0.37	7.02	0.039	38.3	40.2	44.8	1.0	1.9
HoneyCut_NrAmite	1.5	0.26	0.37	7.12	0.038	23.0	26.8	32.7	1.7	2.3
HoneyCut_West	0.4	0.27	0.38	6.95	0.04	38.0	39.8	40.6	0.6	0.9
HornsbyCrk_CnMkt	1.1	0.24	0.34	6.52	0.042	0.5	0.5	0.5	2.4	4.4
HornsbyCrk_DSCan	1.8	0.25	0.35	6.56	0.042	0.7	0.9	1.2	2.3	4.6

Table A1-1: HEC-HMS Mod	lel Paramet	er Summaı	у							
HornsbyCrk_FLBd	5.2	0.24	0.34	6.55	0.042	2.6	3.1	3.4	3.4	12.3
HornsbyCrk_HCT1	0.6	0.23	0.32	6.48	0.043	0.8	1.0	1.1	1.4	2.7
HornsbyCrk_HCT3	1.4	0.23	0.32	6.55	0.042	0.6	0.7	0.7	2.1	5.2
HornsbyCT1_Corbn	1.6	0.23	0.32	6.53	0.042	0.8	0.8	1.0	2.3	6.2
HornsbyCT3_Corbn	1.5	0.22	0.31	6.49	0.043	0.5	0.8	0.8	2.0	5.1
HornsbyCT3_HC	0.9	0.22	0.31	6.53	0.042	0.7	0.7	0.9	1.9	5.2
HornsbyC_I12	2.9	0.24	0.34	6.5	0.041	2.7	3.3	3.8	2.7	6.9
HubByu_DS_GS_PH	1.7	0.22	0.31	6.53	0.041	1.0	1.1	1.4	2.9	7.1
HubByu_GrnwelSpr	3.0	0.22	0.31	6.52	0.042	1.1	1.4	1.5	4.6	9.2
HubByu_GS_PtHud	1.1	0.23	0.32	6.56	0.041	1.2	1.2	1.3	2.5	5.8
HubByu_Peairs	0.3	0.22	0.31	6.47	0.043	0.0	0.1	0.1	2.1	5.0
HunterByu_01	0.5	0.2	0.28	7.58	0.034	0.0	0.1	0.1	2.1	1.3
HunterByu_02	1.0	0.2	0.28	7.46	0.034	0.1	0.1	0.1	2.8	2.0
HunterByu_03	0.7	0.22	0.31	6.96	0.04	0.0	0.1	0.1	2.4	1.4
HunterByu_04	0.9	0.21	0.29	7.41	0.034	0.3	0.3	0.3	2.4	1.3
HunterByu_05	1.5	0.21	0.29	7.25	0.036	0.2	0.2	0.2	3.8	3.0
HURRICANE_dsJOOR	1.4	0.25	0.36	7.2	0.038	34.1	37.2	38.2	1.3	1.9
HURRICANE_HOWELL	2.0	0.28	0.39	7.77	0.035	33.4	34.8	37.2	1.5	3.6

A1-18 | Amite River Basin Numerical Model

Table A1-1: HEC-HMS Mo	del Paramet	er Summa	ry							
HURRICANE_Joor	2.7	0.27	0.38	8.02	0.034	28.0	32.7	35.9	2.2	4.7
HURRICANE_Presct	0.6	0.26	0.36	7.19	0.039	31.9	35.0	35.9	0.8	0.9
HURRICANE_Wildwd	0.5	0.27	0.37	7.66	0.036	41.6	43.3	45.2	0.6	1.4
ndianByu_PtHud	1.4	0.25	0.35	7.5	0.042	0.5	0.6	0.6	2.9	3.7
ndianByu_UWB	1.9	0.24	0.34	7.54	0.042	0.5	0.6	0.6	3.2	4.1
JacksB_Claycut	1.0	0.25	0.35	6.73	0.041	43.9	44.6	49.7	0.7	0.8
JacksB_ParkFor	0.4	0.3	0.42	8.4	0.031	46.1	48.0	51.5	0.6	0.6
JoinerCrk_01	0.4	0.19	0.26	6.46	0.048	0.5	0.5	0.5	1.7	0.9
JoinerCrk_02	0.8	0.25	0.35	4.83	0.067	0.1	0.1	0.1	2.9	2.0
JoinerCrk_03	0.9	0.24	0.34	4.84	0.067	0.6	0.6	0.6	2.8	1.7
JoinerCrk_04	1.7	0.25	0.35	4.7	0.069	0.8	0.8	0.8	3.2	2.2
JoinerCrk_05	1.1	0.23	0.32	5.47	0.059	0.3	0.3	0.3	3.1	2.3
JoinerCrk_06	0.7	0.22	0.31	6.11	0.054	0.6	0.6	0.6	2.6	1.5
JonesBayou	1.0	0.24	0.34	7.59	0.041	2.7	2.9	3.8	3.0	5.3
JonesCr_Airline	0.8	0.34	0.48	10.81	0.017	60.5	67.3	74.0	0.6	1.1
JonesCr_FLBlvd	2.1	0.28	0.39	8.35	0.032	43.0	47.0	51.2	0.9	1.9
JonesCr_Mont	2.0	0.28	0.4	8.71	0.029	47.3	62.7	68.8	1.0	1.9
JonesCr_NrAmite	2.6	0.23	0.33	6.34	0.036	23.7	25.7	28.0	2.5	5.6

Table A1-1: HEC-HMS Mo	odel Paramet	er Summa	ry							
JonesCr_OldHamd	2.6	0.27	0.38	7.51	0.036	35.9	38.3	41.5	1.2	2.0
JonesCr_ONealLn	1.9	0.25	0.36	6.89	0.035	32.2	36.4	40.5	1.1	1.2
JonesCr_WeinerCr	2.4	0.27	0.39	7.73	0.034	37.3	42.3	43.0	1.3	2.1
KnoxBr_Firewood	0.5	0.26	0.37	7.07	0.036	43.4	52.5	63.1	0.5	1.3
KnoxBr_ONealLn	0.8	0.24	0.34	6.47	0.041	29.2	30.8	32.5	1.3	1.8
LCypByu_Comite	2.2	0.25	0.35	7.11	0.039	11.3	11.3	12.0	3.0	5.2
LCypByu_DS_Lavey	0.4	0.21	0.3	6.9	0.039	6.1	6.6	9.4	3.0	3.5
LCypByu_GBL	1.7	0.27	0.38	8.58	0.033	22.0	22.9	26.8	2.0	3.6
LCypByu_Hooper	1.7	0.23	0.33	7.48	0.041	9.6	11.1	13.8	3.0	4.5
LCypByu_Lavey	0.9	0.24	0.34	7.21	0.04	15.4	17.5	17.5	1.9	2.2
LCypByu_Thomas	0.4	0.24	0.33	7.3	0.041	6.0	6.0	6.0	2.0	2.5
LCypByu_US_SL	2.0	0.25	0.35	7.02	0.041	12.7	13.9	15.8	2.3	3.2
LilClyell_DS_I12	3.5	0.24	0.34	7.68	0.039	3.8	5.3	6.5	3.1	14.1
LilClyell_I12	2.9	0.24	0.33	6.51	0.042	3.3	4.7	6.9	2.5	7.9
LilClyell_L01	0.6	0.25	0.36	6.53	0.043	3.2	7.2	7.2	1.8	3.9
LilClyell_Prloux	2.3	0.22	0.31	8.22	0.042	4.6	5.8	7.2	2.4	7.9
LilClyell_Range	0.9	0.23	0.33	6.53	0.043	14.6	14.8	18.0	1.3	4.0
LilClyell_RangLn	4.3	0.24	0.33	7.35	0.042	1.2	1.4	1.6	2.3	9.9

A1-20 | Amite River Basin Numerical Model

Table A1-1: HEC-HMS Mo	odel Paramet	er Summa	ry							
LilClyell_Satsu	1.2	0.24	0.34	6.89	0.042	1.8	1.9	2.0	1.8	4.5
LilSndyC2_DS_Jac	0.5	0.22	0.31	7.32	0.041	0.6	0.6	0.6	2.3	2.2
LilSndyC2_DS_Mil	0.2	0.23	0.32	6.64	0.041	1.9	2.4	2.8	2.2	2.0
LilSndyC2_DS_Per	0.1	0.23	0.32	6.46	0.041	1.0	1.0	1.3	2.2	1.9
LilSndyC2_Jack	0.9	0.23	0.32	6.62	0.041	0.3	0.3	0.3	2.6	2.8
LilSndyC2_Lib	0.7	0.23	0.32	6.33	0.044	0.4	0.5	0.5	2.5	2.6
LilSndyC2_Milld	0.8	0.22	0.31	6.68	0.042	0.5	0.5	0.5	2.2	3.7
LilSndyC2_Peairs	0.8	0.23	0.32	6.59	0.041	0.3	0.3	0.3	4.6	5.5
LilSndyC2_US_Jac	1.8	0.23	0.33	6.89	0.041	0.4	0.5	0.5	3.6	3.9
LilSndyC2_US_LOC	4.2	0.21	0.3	7.32	0.036	0.3	0.3	0.3	4.3	4.4
LilSndyC2_Wind	0.5	0.23	0.32	6.48	0.043	0.2	0.2	0.3	1.9	2.9
LittleSandyCrk_01	0.5	0.2	0.28	7.42	0.035	0.2	0.2	0.2	2.1	1.3
LittleSandyCrk_02	0.8	0.2	0.29	7.33	0.035	0.5	0.5	0.5	2.5	1.8
LittleSandyCrk_03	1.4	0.19	0.27	7.57	0.033	0.4	0.4	0.4	2.9	2.0
LittleSandyCrk_04	2.3	0.2	0.28	7.53	0.034	0.2	0.2	0.2	3.7	3.1
LittleSandyCrk_05	2.4	0.2	0.28	7.46	0.035	0.2	0.2	0.2	4.2	3.9
LittleSandyCrk_06	2.8	0.21	0.29	7.14	0.037	0.2	0.2	0.2	4.2	3.8
LivelyBT_FL	0.9	0.29	0.41	8.32	0.032	48.7	51.6	53.8	0.6	0.9

Table A1-1: HEC-HMS M	odel Paramet	er Summa	ry							
LivelyBT_LB	0.9	0.27	0.38	7.21	0.039	43.8	43.8	43.8	1.2	2.0
LivelyB_FLBlvd	1.5	0.28	0.39	7.72	0.035	32.0	38.5	43.1	1.3	2.2
LivelyB_HoneyCut	0.8	0.28	0.39	7.6	0.036	35.9	38.7	39.5	0.9	1.5
LivelyB_LBT	0.4	0.26	0.37	7.36	0.037	45.8	46.8	46.8	0.7	0.9
LivelyB_Pvt	0.7	0.25	0.36	6.57	0.042	7.3	13.0	19.7	1.8	3.9
LongSlashBranch	0.7	0.24	0.34	6.32	0.046	33.3	37.4	39.7	1.2	2.3
LSU_NP_MaySt	0.8	0.25	0.35	7.15	0.029	28.5	30.7	30.7	1.1	1.3
LSU_NP_Stanfrd	0.8	0.16	0.22	4.76	0.019	12.5	13.2	14.6	2.6	3.6
LWhiteByu_Comite	4.4	0.25	0.35	7.25	0.041	12.5	15.4	16.5	4.8	12.1
LWhiteByu_Pettit	2.5	0.23	0.33	7.57	0.041	4.7	5.2	6.5	3.1	8.9
LWhiteByu_US_Pet	3.5	0.24	0.34	7.77	0.041	7.0	8.7	9.4	5.1	32.9
MidClyellT3	0.3	0.23	0.32	6.57	0.042	2.1	2.1	2.7	1.6	4.6
MidClyellT5_CnMk	0.9	0.23	0.32	6.52	0.042	3.9	3.9	4.7	2.0	6.0
MidClyellT5_MC	1.3	0.23	0.33	6.55	0.042	2.1	2.7	3.4	2.5	6.2
MidClyellT5_Sprg	0.6	0.22	0.31	6.53	0.042	1.1	1.2	1.6	1.9	4.3
MidClyellT6_GalG	0.4	0.24	0.33	6.55	0.042	9.1	9.1	9.1	1.7	4.8
MidClyellT6_MC	1.5	0.22	0.31	6.54	0.042	1.5	2.1	2.5	2.6	5.4
MidClyell_CB	7.9	0.25	0.35	6.94	0.04	0.9	0.9	1.0	3.8	10.3

A1-22 | Amite River Basin Numerical Model

Table A1-1: HEC-HMS Mo	odel Paramet	er Summa	ry							
MidClyell_CnMkt	2.2	0.24	0.33	6.5	0.043	0.9	1.0	1.1	2.3	5.6
MidClyell_FLBlvd	1.2	0.23	0.32	6.57	0.042	3.3	4.6	5.5	2.2	3.8
MidClyell_HoodRd	3.8	0.24	0.34	6.56	0.042	0.6	0.7	0.8	2.8	10.2
MidClyell_I12	3.5	0.24	0.34	6.59	0.041	4.4	6.4	6.6	2.8	8.0
MidClyell_MCT1	2.0	0.23	0.32	6.5	0.043	1.0	1.1	1.4	2.2	6.7
MidClyell_MCT3	1.7	0.23	0.32	6.57	0.042	0.9	1.2	1.3	2.4	5.3
MidClyell_MCT5	0.5	0.24	0.34	6.56	0.042	2.9	3.8	5.3	1.8	3.0
MidClyell_MCT6	0.9	0.23	0.32	6.55	0.042	2.9	3.6	4.4	2.0	4.3
MidClyell_TylrBy	5.1	0.24	0.34	6.55	0.042	1.8	2.1	2.5	2.6	6.9
MidClyell_US_LOC	3.9	0.21	0.29	7.25	0.04	0.6	0.6	0.6	5.2	9.4
MidClyell_WeissR	1.7	0.23	0.32	6.54	0.042	0.2	0.2	0.3	2.6	10.3
MillCrk_CarsonRd	0.2	0.23	0.32	6.51	0.041	1.3	1.3	1.3	1.7	1.8
MillCrk_MahoneyRd	6.5	0.2	0.28	7.47	0.034	0.1	0.1	0.1	6.3	7.9
MillCrk_PrideBar	0.6	0.22	0.31	6.36	0.039	0.3	0.3	0.3	1.8	1.8
MillC_SandyC	0.7	0.23	0.32	6.57	0.042	0.3	0.4	0.5	2.3	3.5
MillersCT_I12	0.1	0.24	0.34	6.57	0.042	10.4	22.0	28.7	1.2	2.5
MillersCT_MC	1.0	0.24	0.33	6.45	0.041	28.2	35.7	42.2	2.3	3.5
MillersCT_UnT	0.7	0.24	0.34	6.55	0.043	36.5	55.9	79.7	1.0	2.3

Table A1-1: HEC-HMS Mode	l Paramete	r Summar	у							
MillersC_Julban	1.7	0.25	0.35	6.54	0.042	8.8	11.4	13.3	2.5	5.7
MolerB_CnMkt	1.9	0.22	0.31	6.56	0.042	1.7	1.9	2.0	1.7	7.3
MolerB_Springfld	1.0	0.22	0.31	6.55	0.042	3.7	5.0	5.6	1.7	4.2
MolerB_WC	0.4	0.21	0.3	6.5	0.041	3.8	4.8	5.6	1.4	3.0
MuddyCrk_Henry	0.6	0.25	0.35	6.65	0.041	23.8	38.6	48.5	1.1	3.0
MuddyCrk_HWY42	2.1	0.24	0.34	6.6	0.04	11.2	13.4	18.2	1.8	9.9
MuddyCrk_LilPra	1.0	0.25	0.35	6.52	0.039	17.5	18.5	25.2	1.5	3.0
MuddyCrk_NrManch	0.9	0.25	0.35	6.71	0.038	9.8	11.7	12.5	1.8	2.7
MuddyCrk_NrOakGr	1.0	0.25	0.36	6.57	0.037	12.8	17.6	17.6	1.5	5.8
NBrWardsCr_atBR	2.9	0.28	0.39	8.14	0.032	40.2	42.3	48.4	1.3	2.1
NBrWardsCr_FL	0.7	0.33	0.46	10.08	0.021	55.4	89.3	89.3	0.7	1.5
NBrWardsCr_Hare	1.0	0.31	0.43	9.44	0.025	52.6	86.4	86.5	0.7	1.1
NBrWardsCr_I10	1.4	0.28	0.39	8.07	0.033	40.3	53.0	56.2	1.1	1.4
NewR_Maurepas	9.0	0.29	0.41	11.78	0.006	0.0	0.1	0.1	0.1	122.0
ROBERTCN_dsJOOR	0.5	0.23	0.32	6.88	0.041	9.2	9.2	9.8	1.9	2.1
ROBERTCN_Grnwell	2.0	0.25	0.35	7.49	0.037	32.1	33.9	36.1	1.5	3.3
ROBERTCN_Joor	1.0	0.23	0.32	6.87	0.042	8.8	10.3	12.1	2.5	4.1
ROBERTCN_T	0.4	0.24	0.33	6.74	0.041	27.2	27.2	29.9	1.2	1.8

A1-24 | Amite River Basin Numerical Model

Table A1-1: HEC-HMS Mod	del Paramet	er Summa	ry							
ROBERTON_US_LOC	0.6	0.26	0.36	7.06	0.039	24.0	24.0	26.7	1.6	2.7
RobertsByu_01	0.5	0.2	0.28	7.54	0.033	0.9	0.9	0.9	1.5	0.7
RobertsByu_02	0.3	0.19	0.27	7.62	0.032	0.2	0.2	0.2	1.4	0.6
RobertsByu_03	0.8	0.2	0.27	7.58	0.033	0.2	0.2	0.2	2.1	1.2
RobertsByu_04	0.5	0.2	0.28	7.25	0.036	0.3	0.3	0.3	2.4	1.3
SandyCrk_01	0.2	0.24	0.34	6.78	0.04	0.5	0.5	0.5	1.9	1.4
SandyCrk_02	0.6	0.24	0.33	6.77	0.039	1.1	1.1	1.1	1.9	1.2
SandyCrk_03	1.7	0.22	0.3	7.05	0.036	0.1	0.1	0.1	2.8	2.0
SandyCrk_04	1.4	0.25	0.35	6.55	0.042	0.1	0.1	0.1	2.7	1.7
SandyCrk_05	1.3	0.25	0.35	6.55	0.042	0.3	0.3	0.3	2.6	1.6
SandyCrk_06	2.2	0.24	0.33	6.64	0.041	0.3	0.3	0.3	3.0	2.2
SandyCrk_07	1.2	0.25	0.34	6.31	0.044	0.5	0.5	0.5	2.7	1.6
SandyCrk_08	2.0	0.23	0.33	6.58	0.04	0.5	0.5	0.5	3.0	1.9
SandyCrk_09	1.0	0.24	0.34	6.52	0.043	0.0	0.1	0.1	3.5	2.6
SandyCrk_10	0.7	0.21	0.3	6.37	0.041	0.4	0.4	0.4	2.9	1.8
SandyCrk_11	1.6	0.25	0.35	6.47	0.043	0.0	0.1	0.1	3.7	2.5
SandyCrk_12	0.1	0.22	0.31	6.62	0.041	0.7	0.7	0.7	1.8	1.1
SandyCrk_13	1.4	0.22	0.31	6.89	0.041	0.3	0.3	0.3	4.8	4.1

Table A1-1: HEC-HMS Mo	odel Paramet	er Summa	ry							
SandyCrk_14	1.9	0.21	0.29	7.41	0.036	0.3	0.3	0.3	4.4	3.9
SandyCrk_15	0.7	0.21	0.3	7.84	0.039	0.1	0.1	0.1	3.4	2.7
SandyCrk_16	1.3	0.2	0.28	7.43	0.035	0.1	0.1	0.1	3.9	3.6
SandyCrk_17	1.7	0.22	0.31	6.79	0.04	0.1	0.1	0.1	4.5	5.0
SandyCrk_18	0.7	0.22	0.31	6.61	0.042	0.4	0.4	0.4	4.5	5.9
SandyCrk_19	2.2	0.21	0.3	7.08	0.038	0.2	0.2	0.2	4.4	4.6
SandyCrk_20	1.2	0.22	0.31	7	0.039	0.3	0.3	0.3	4.7	8.4
SandyC_AlphonFor	0.8	0.22	0.3	5.87	0.05	0.1	0.1	0.1	3.0	4.8
SandyC_BeaverPnd	0.7	0.23	0.33	6.5	0.04	0.7	0.8	0.8	3.4	5.4
SandyC_FB	0.3	0.24	0.34	6.48	0.043	0.1	0.1	0.1	2.2	2.9
SandyC_GrnwelSpr	2.8	0.23	0.32	6.37	0.043	0.7	0.9	0.9	3.8	6.4
SandyC_MillC	0.7	0.23	0.33	6.51	0.042	0.3	0.3	0.4	3.7	6.6
SandyC_PrideBay	0.8	0.23	0.33	6.44	0.041	0.8	1.0	1.0	2.0	2.0
SandyC_StnyPtBur	0.6	0.23	0.32	6.47	0.041	0.4	0.4	0.6	2.4	2.1
SandyC_UN3SC	3.1	0.25	0.35	6.51	0.043	0.1	0.1	0.1	4.0	6.2
SandyRun_01	0.5	0.25	0.35	4.78	0.068	0.4	0.4	0.4	1.6	0.7
SandyRun_02	1.0	0.24	0.34	5.07	0.064	0.4	0.4	0.4	2.5	1.3
SandyRun_03	0.3	0.22	0.31	5.77	0.055	0.4	0.4	0.4	1.7	0.7

A1-26 | Amite River Basin Numerical Model

Table A1-1: HEC-HMS Mo	odel Paramet	er Summa	ry							
SandyRun_04	0.5	0.19	0.27	6.41	0.048	0.4	0.4	0.4	2.1	0.9
SandyRun_05	0.9	0.2	0.29	6.28	0.05	0.4	0.4	0.4	2.5	1.5
SandyRun_06	1.2	0.2	0.28	6.47	0.048	0.4	0.4	0.4	2.7	1.6
SandyRun_07	1.2	0.24	0.33	5.55	0.06	0.1	0.1	0.1	2.6	1.2
SandyRun_08	0.5	0.22	0.31	6.74	0.045	0.1	0.1	0.1	1.9	0.9
ScalousCr	4.2	0.21	0.29	7.46	0.036	0.1	0.1	0.1	5.3	6.0
SCanal_Dyer	1.0	0.23	0.32	8.61	0.042	1.9	2.4	3.1	3.3	7.0
SCanal_Plank	1.1	0.24	0.34	7.4	0.041	0.2	0.3	0.3	2.7	4.9
ShoeCT1_SC	0.3	0.24	0.34	6.56	0.042	21.3	21.3	23.5	1.3	2.1
ShoeCT1_US_LOC	0.4	0.25	0.35	7.09	0.039	20.3	20.3	20.3	1.4	2.0
ShoeC_Comite	1.5	0.24	0.34	6.57	0.037	8.1	9.4	9.6	2.8	4.3
ShoeC_DS_Hooper	0.6	0.23	0.32	6.52	0.042	10.9	13.6	16.6	1.6	2.1
ShoeC_Gurney	0.2	0.25	0.35	6.49	0.041	5.5	6.6	7.5	1.4	2.3
ShoeC_Hooper	0.2	0.26	0.36	7.24	0.038	11.5	13.4	13.9	1.8	4.2
ShoeC_Pecos	1.7	0.24	0.34	6.59	0.039	11.1	12.8	16.4	2.5	3.5
ShoeC_SCT1	1.2	0.23	0.32	6.73	0.041	6.8	7.9	7.9	2.4	3.9
SouthCanal_Div	2.7	0.23	0.33	8.5	0.04	5.9	11.6	11.6	3.5	13.1
SouthCanal_HWY19	0.3	0.24	0.33	9.11	0.039	7.6	7.6	9.1	1.5	1.4

Table A1-1: HEC-HMS Mo	odel Paramet	er Summa	ry							
SOUTHLATERAL	0.7	0.25	0.35	6.72	0.042	19.8	21.2	23.7	1.7	2.5
SouthSandyRun_01	0.2	0.25	0.35	4.64	0.069	0.0	0.1	0.1	1.5	0.6
SouthSandyRun_02	0.4	0.25	0.35	5.14	0.062	0.1	0.1	0.1	2.0	0.9
SouthSandyRun_03	0.9	0.25	0.35	5.02	0.064	0.5	0.5	0.5	2.9	2.0
SouthSandyRun_04	0.5	0.25	0.35	5.04	0.064	0.9	0.9	0.9	2.1	1.1
SpillersCT2_	0.7	0.25	0.35	7.33	0.037	0.3	0.4	0.4	2.8	7.6
SpillersCT2_SC	1.0	0.23	0.32	6.52	0.038	0.9	1.0	1.1	2.9	7.4
SpillersCT2_Wei	1.1	0.23	0.33	6.92	0.039	1.5	1.7	1.9	2.3	5.6
SpillersCT2_3	0.2	0.22	0.31	6.3	0.048	2.6	2.8	3.1	3.9	18.3
SpillersC_DS_Sim	0.4	0.22	0.31	6.55	0.042	0.6	0.7	0.8	2.6	6.7
SpillersC_Hess	0.5	0.21	0.3	5.91	0.051	1.5	2.1	2.1	2.1	4.8
SpillersC_HWY16	1.1	0.23	0.33	6.38	0.043	5.0	6.1	6.1	3.2	5.1
SpillersC_Sims	0.8	0.21	0.3	6.13	0.048	0.4	0.4	0.6	2.5	5.0
SpillersC_WeissRd	1.5	0.22	0.3	6.18	0.048	0.3	0.4	0.5	3.2	10.9
StoneByu_01	0.3	0.23	0.32	6.12	0.039	1.1	1.1	1.1	1.8	1.1
StoneByu_02	0.2	0.25	0.35	6.53	0.042	1.4	1.4	1.4	1.5	0.6
StoneByu_03	0.9	0.23	0.32	6.84	0.039	1.0	1.0	1.0	2.2	1.3
StoneByu_04	0.6	0.2	0.29	7.41	0.035	0.0	0.1	0.1	2.6	1.7

Table A1-1: HEC-HMS Mo	del Paramet	er Summa	ry							
StoneByu_05	1.3	0.19	0.26	6.99	0.032	0.2	0.2	0.2	3.5	2.7
SUB_BLACKCRK_01	0.8	0.23	0.33	6.39	0.041	0.4	0.4	0.4	2.5	1.8
SUB_BLACKCRK_02	1.8	0.24	0.34	6.4	0.041	0.8	0.8	0.8	3.6	3.2
SUB_BLACKCRK_03	2.5	0.25	0.35	6.54	0.042	0.1	0.1	0.1	4.0	3.9
SUB_BLACKCRK_04	3.2	0.25	0.35	6.5	0.041	0.2	0.2	0.2	4.7	5.0
SUB_BLACKCRK_05	1.4	0.26	0.36	6.52	0.042	0.3	0.3	0.3	3.9	4.5
SUB_COMITENP_01	0.5	0.26	0.37	6.57	0.042	1.2	1.4	1.4	2.0	1.8
SUB_COMITENP_02	0.4	0.25	0.35	6.41	0.049	1.7	2.0	2.4	2.3	2.0
SUB_COMITE_01	24.6	0.26	0.37	6.64	0.046	0.8	0.9	0.9	8.1	10.4
SUB_COMITE_02	1.3	0.21	0.3	6.98	0.037	0.1	0.1	0.1	4.1	3.1
SUB_COMITE_03	12.8	0.23	0.32	6.69	0.041	0.1	0.1	0.1	7.4	9.1
SUB_COMITE_04	3.1	0.23	0.33	6.58	0.043	0.0	0.1	0.1	3.6	2.5
SUB_COMITE_05	4.5	0.24	0.34	6.56	0.042	0.2	0.2	0.2	5.3	4.9
SUB_COMITE_06	3.1	0.22	0.31	6.98	0.039	0.1	0.1	0.1	4.9	4.2
SUB_COMITE_07	6.8	0.21	0.29	7.21	0.036	0.0	0.1	0.1	6.3	7.4
SUB_COMITE_09	9.1	0.21	0.29	7.05	0.036	0.3	0.3	0.3	6.3	7.4
SUB_COMITE_10	1.1	0.23	0.32	6.58	0.043	0.2	0.2	0.2	9.8	26.1
SUB_COMITE_12	0.4	0.2	0.29	6.38	0.037	0.0	0.1	0.1	3.7	2.9

Table A1-1: HEC-HMS Mode	el Paramet	er Summa	ry							
SUB_COMITE_13	3.6	0.22	0.31	6.95	0.038	0.8	0.8	0.8	4.9	4.2
SUB_COMITE_14	2.6	0.22	0.31	6.87	0.039	1.1	1.1	1.1	5.0	4.4
SUB_COMITE_15	4.1	0.21	0.3	6.94	0.037	0.3	0.3	0.3	3.7	2.8
SUB_COMITE_18	2.2	0.22	0.3	6.4	0.039	0.2	0.2	0.2	5.2	5.7
SUB_COMITE_19	2.2	0.23	0.33	6.63	0.041	0.2	0.2	0.2	5.8	5.5
SUB_COMITE_21	2.7	0.22	0.31	6.58	0.055	0.3	0.3	0.3	3.8	6.8
SUB_COMITE_22	8.5	0.22	0.31	6.84	0.05	0.3	0.3	0.3	7.5	10.4
SUB_COMITE_23	3.5	0.24	0.34	6.22	0.085	0.4	0.5	0.5	4.9	5.8
SUB_COMITE_25	0.6	0.23	0.32	6.19	0.148	0.4	0.4	0.4	2.7	3.4
SUB_COMITE_26	0.8	0.23	0.33	6.44	0.111	0.5	0.5	0.5	3.1	4.2
SUB_DOYLEBAYOU_01	1.2	0.25	0.35	6.57	0.042	0.5	0.5	0.5	3.3	3.1
SUB_DOYLEBAYOU_02	1.7	0.24	0.34	6.55	0.042	0.1	0.1	0.1	3.8	5.4
SUB_DOYLEBAYOU_03	2.3	0.26	0.36	6.56	0.042	0.4	0.4	0.4	4.5	8.3
SUB_DOYLEBAYOU_05	0.6	0.25	0.35	6.57	0.042	0.2	0.3	0.4	3.6	6.4
SUB_DOYLEBAYOU_06	0.9	0.24	0.34	7.17	0.041	0.3	0.3	0.4	3.2	6.3
SUB_DOYLEBAYOU_07	0.5	0.25	0.35	6.5	0.04	0.4	0.6	0.6	2.5	2.1
SUB_DOYLEBAYOU_08	1.8	0.25	0.35	6.81	0.041	0.7	0.9	1.0	3.9	4.6
SUB_DOYLENP1_01	0.9	0.25	0.36	6.56	0.042	7.6	8.9	8.9	2.5	3.3

Table A1-1: HEC-HMS Model	Paramete	er Summar	ту							
SUB_DOYLENP1_02	0.2	0.25	0.35	6.52	0.042	0.5	0.7	0.7	1.8	1.5
SUB_FISHERBAYOU_01	0.7	0.2	0.29	7.44	0.034	0.1	0.1	0.1	2.5	2.0
SUB_FISHERBAYOU_02	1.1	0.2	0.28	7.43	0.034	0.2	0.2	0.2	3.5	2.9
SUB_FISHERBAYOU_03	2.9	0.2	0.29	7.38	0.034	0.1	0.1	0.1	4.3	3.6
SUB_HOGBAYOU_01	0.9	0.25	0.35	6.53	0.042	0.1	0.1	0.1	2.9	2.5
SUB_HOGBAYOU_02	1.2	0.25	0.35	6.55	0.042	0.1	0.1	0.1	3.1	2.9
SUB_IRONBAYOU_01	0.5	0.24	0.34	6.56	0.042	0.4	0.4	0.4	2.5	1.9
SUB_IRONBAYOU_02	0.8	0.24	0.34	6.55	0.042	0.3	0.3	0.3	2.3	1.5
SUB_IRONBAYOU_03	1.0	0.26	0.36	6.53	0.042	0.6	0.6	0.6	3.2	3.2
SUB_IRONBAYOU_04	0.9	0.26	0.36	6.54	0.042	0.5	0.5	0.5	4.0	6.7
SUB_KNIGHTONBAYOU_01	0.3	0.2	0.28	7.38	0.035	0.2	0.2	0.2	2.1	1.2
SUB_KNIGHTONBAYOU_02	1.6	0.2	0.28	7.35	0.036	0.0	0.1	0.1	3.5	2.7
SUB_KNIGHTONBAYOU_03	2.4	0.2	0.28	7.45	0.034	0.1	0.1	0.1	3.4	2.6
SUB_KNIGHTONBAYOU_04	1.5	0.22	0.3	6.78	0.04	0.0	0.1	0.1	4.9	5.2
SUB_LEWISCRK_01	0.8	0.21	0.3	7.09	0.037	5.1	5.1	5.1	2.1	1.0
SUB_LEWISCRK_02	0.3	0.21	0.3	7.05	0.039	5.6	5.6	5.6	2.2	1.3
SUB_LEWISCRK_03	0.2	0.21	0.3	6.82	0.039	0.3	0.3	0.3	2.2	1.4
SUB_LITCOMITE_01	10.9	0.23	0.32	7.99	0.042	0.5	0.5	0.5	5.9	6.3

Table A1-1: HEC-HMS Model	Paramete	r Summar	у							
SUB_LITCOMITE_02	1.3	0.23	0.32	6.78	0.041	0.0	0.1	0.1	2.8	1.7
SUB_LITCOMITE_03	3.6	0.24	0.34	6.63	0.041	0.5	0.5	0.5	5.8	6.3
SUB_LITREDWOOD_01	0.8	0.22	0.31	6.12	0.039	1.0	1.0	1.0	3.2	2.3
SUB_LITREDWOOD_02	1.1	0.24	0.33	6.49	0.041	0.2	0.2	0.2	3.7	3.2
SUB_LITREDWOOD_03	1.9	0.24	0.33	6.66	0.041	0.2	0.2	0.2	3.7	3.1
SUB_LITREDWOOD_04	1.3	0.22	0.3	6.83	0.039	0.2	0.2	0.2	4.6	4.2
SUB_LITREDWOOD_05	2.4	0.2	0.28	7.45	0.034	0.2	0.2	0.2	4.0	3.3
SUB_MONAHANBAYOU_01	1.2	0.2	0.28	7.5	0.033	0.5	0.5	0.5	2.7	1.9
SUB_MONAHANBAYOU_02	2.5	0.2	0.28	7.29	0.034	0.2	0.2	0.2	4.7	4.6
SUB_PRETTYCRK_01	1.3	0.23	0.32	7	0.039	0.2	0.2	0.2	2.5	1.6
SUB_PRETTYCRK_02	2.2	0.22	0.31	7.04	0.039	0.2	0.2	0.2	3.3	2.6
SUB_PRETTYCRK_03	2.3	0.22	0.31	7.01	0.037	0.2	0.2	0.2	3.0	1.9
SUB_PRETTYCRK_04	4.5	0.2	0.28	7.48	0.034	0.0	0.1	0.1	5.0	4.9
SUB_PRETTYCRK_05	3.6	0.24	0.34	6.37	0.046	0.7	0.7	0.7	4.4	3.9
SUB_PRETTYCRK_06	4.5	0.21	0.29	7.1	0.036	0.2	0.2	0.2	5.6	5.7
SUB_PRETTYCRK_07	3.1	0.22	0.31	6.99	0.039	0.5	0.5	0.5	4.7	4.5
SUB_PRETTYCRK_08	1.7	0.23	0.32	6.46	0.041	6.1	6.1	6.1	4.0	3.1
SUB_PRETTYCRK_09	0.0	0.21	0.29	5.86	0.038	0.0	0.1	0.1	1.1	0.9

A1-32 | Amite River Basin Numerical Model

Table A1-1: HEC-HMS Mode	l Paramet	er Summaı	У							
SUB_REDWOODCRK_01	0.7	0.19	0.27	7.61	0.032	0.7	0.7	0.7	2.3	1.4
SUB_REDWOODCRK_02	1.2	0.21	0.29	7.05	0.036	1.2	1.2	1.2	2.5	1.4
SUB_REDWOODCRK_03	2.9	0.21	0.3	7.25	0.036	0.5	0.5	0.5	3.4	2.6
SUB_REDWOODCRK_04	3.0	0.22	0.31	6.82	0.039	0.1	0.1	0.1	4.5	3.8
SUB_REDWOODCRK_05	1.8	0.24	0.34	6.56	0.042	0.1	0.1	0.1	4.7	5.2
SUB_REDWOODCRK_06	3.8	0.22	0.32	6.93	0.038	1.1	1.1	1.1	4.4	3.8
SUB_REDWOODCRK_08	1.9	0.23	0.32	6.63	0.04	0.2	0.2	0.2	5.0	5.0
SUB_REDWOODCRK_09	3.5	0.2	0.28	7.39	0.034	0.4	0.4	0.4	5.0	4.5
SUB_REDWOODCRK_10	1.1	0.23	0.32	6.85	0.039	0.3	0.3	0.3	4.0	3.7
SUB_REDWOODCRK_11	2.6	0.25	0.35	6.59	0.041	0.5	0.5	0.5	5.3	7.2
SUB_REDWOODCRK_12	1.3	0.23	0.32	6.94	0.038	0.2	0.2	0.2	3.7	3.4
SUB_REDWOODCRK_13	2.7	0.24	0.33	6.55	0.042	0.1	0.1	0.1	4.6	4.7
SUB_REDWOODCRK_14	1.2	0.24	0.34	6.55	0.042	0.2	0.2	0.2	4.4	5.1
SUB_REDWOODCRK_15	0.4	0.25	0.35	6.77	0.041	0.1	0.1	0.2	2.5	2.9
SUB_REDWOODCRK_16	0.4	0.24	0.34	6.49	0.042	0.0	0.1	0.1	2.3	3.0
SUB_REDWOODCRK_17	0.7	0.25	0.35	6.88	0.041	0.2	0.2	0.2	4.0	6.1
SUB_REDWOODCRK_18	0.1	0.24	0.34	6.47	0.042	1.0	1.0	1.3	1.4	1.0
SUB_REDWOODNP	0.5	0.25	0.35	6.55	0.042	0.0	0.1	0.1	3.0	3.4

Table A1-1: HEC-HMS Model I	Parameter	Summary	/							
SUB_SCHLEIBAYOU_01	0.5	0.2	0.29	7.47	0.034	1.1	1.1	1.1	2.6	1.8
SUB_SCHLEIBAYOU_02	1.1	0.21	0.3	7.21	0.036	0.5	0.5	0.5	2.9	2.3
SUB_SCHLEIBAYOU_03	1.3	0.21	0.29	7.11	0.037	0.5	0.5	0.5	3.8	3.7
SUB_SESSIONSBAYOU_NP	1.5	0.2	0.28	7.54	0.034	0.1	0.1	0.1	3.8	3.1
SUB_SESSIONSBAYOU_01	0.6	0.2	0.28	7.42	0.034	0.0	0.1	0.1	1.9	1.1
SUB_SESSIONSBAYOU_02	0.8	0.21	0.29	7.25	0.037	0.2	0.2	0.2	2.9	2.0
SUB_SESSIONSBAYOU_03	1.5	0.21	0.29	7.11	0.037	0.1	0.1	0.1	3.5	2.7
SUB_SESSIONSBAYOU_04	0.6	0.22	0.31	6.49	0.043	0.2	0.2	0.2	3.1	2.1
SUB_UNT_LEWISCRK	0.4	0.2	0.28	7.49	0.034	4.1	4.1	4.1	2.3	1.1
SUB_UNT3_REDWOOD_1	0.4	0.26	0.37	6.57	0.042	2.2	2.7	2.7	2.0	2.3
SUB_UNT3_REDWOOD_2	0.3	0.26	0.36	6.57	0.042	0.0	0.1	0.1	2.1	2.2
SUB_UN_UN3_REDWOOD	0.3	0.26	0.37	6.57	0.042	1.8	2.3	2.3	1.7	1.4
SUB_UN_UN4_REDWOOD_1	2.9	0.25	0.35	6.56	0.042	0.1	0.1	0.1	4.0	4.0
SUB_UN_UN4_REDWOOD_2	0.4	0.25	0.36	6.56	0.042	0.1	0.1	0.2	2.5	2.3
SUB_UN_UN4_REDWOOD_3	0.0	0.24	0.33	6.5	0.043	0.0	0.1	0.2	0.8	0.2
SUB_UN3_REDWOOD_02	0.2	0.25	0.35	6.96	0.041	0.6	0.6	0.6	1.8	1.2
SUB_UN4_REDWOOD_01	0.5	0.25	0.36	6.57	0.042	0.2	0.2	0.2	2.6	2.6
SUB_UN4_REDWOOD_02	0.2	0.25	0.35	6.49	0.042	0.2	0.2	0.3	1.7	1.2

A1-34 | Amite River Basin Numerical Model

Table A1-1: HEC-HMS Model	Paramet	er Summa	ry							
SUB_WALNUTBR_01	0.7	0.25	0.35	6.56	0.042	0.1	0.1	0.1	2.3	1.3
SUB_WALNUTBR_02	1.6	0.25	0.35	6.56	0.042	0.1	0.1	0.1	3.2	2.3
SUB_WALNUTBR_03	1.9	0.24	0.34	6.38	0.043	0.2	0.2	0.2	3.6	2.4
SUB_WFRKLITCOMITE_01	4.4	0.22	0.3	8.29	0.042	0.2	0.2	0.2	4.7	3.9
SUB_WFRKLITCOMITE_02	1.1	0.22	0.31	6.99	0.04	0.2	0.2	0.2	3.3	2.3
SUB_WHITEBAYOU_01	0.6	0.25	0.35	6.57	0.042	0.0	0.1	0.1	2.4	1.9
SUB_WHITEBAYOU_02	1.3	0.25	0.35	6.51	0.041	0.0	0.1	0.1	3.1	3.2
SUB_WHITEBAYOU_03	2.4	0.26	0.36	6.53	0.042	0.3	0.3	0.3	4.7	6.4
SUB_WHITEBAYOU_04	1.3	0.26	0.36	6.56	0.042	0.4	0.4	0.4	3.6	5.8
SUB_WHITEBAYOU_05	1.6	0.26	0.37	6.56	0.042	0.2	0.2	0.2	3.0	4.2
SUB_WHITEBAYOU_06	2.9	0.25	0.35	6.51	0.041	0.2	0.2	0.2	4.7	6.1
TaberC_CarsonRd	1.4	0.23	0.32	6.54	0.041	0.3	0.3	0.3	3.4	4.2
TaberC_HannaC	3.1	0.23	0.32	6.84	0.04	0.4	0.4	0.4	3.6	3.6
TaylorByu_DS_I12	2.5	0.24	0.34	6.58	0.041	6.4	8.0	10.2	2.6	7.8
TaylorByu_FL	0.3	0.23	0.32	6.57	0.042	26.3	31.7	41.1	0.7	1.3
TaylorByu_I12	1.7	0.23	0.32	6.51	0.041	19.3	21.6	37.5	1.9	6.1
TaylorByu_RR	0.3	0.23	0.32	6.55	0.042	11.9	19.8	22.6	1.0	2.9
JnDuffByu_DS	0.3	0.22	0.31	7.3	0.041	0.0	0.1	0.1	1.9	1.6

Table A1-1: HEC-HMS Mode	el Paramet	er Summa	ry							
UnDuffByu_US	0.2	0.24	0.34	6.67	0.042	11.3	11.3	11.3	1.6	1.5
UnT_GreenwellSp	1.1	0.23	0.32	6.55	0.041	0.3	0.3	0.4	2.9	5.6
UNT1ADarlingCrk_01	0.5	0.25	0.35	4.71	0.069	0.3	0.3	0.3	2.2	1.3
UNT1BlackCrk_01	0.6	0.25	0.35	5.06	0.064	0.2	0.2	0.2	2.0	1.2
UNT1BluffCrk_01	3.5	0.22	0.3	7.15	0.036	0.2	0.2	0.2	5.1	4.5
UNT1DarlingCrk_01	0.7	0.2	0.28	6.2	0.051	0.3	0.3	0.3	2.1	1.0
UNT1DarlingCrk_02	0.6	0.24	0.33	4.76	0.064	0.3	0.3	0.3	1.6	0.7
UNT1DarlingCrk_03	0.6	0.24	0.33	5.92	0.059	0.2	0.2	0.2	2.4	1.3
UNT1DunnCrk_01	1.6	0.2	0.28	7.32	0.036	0.4	0.4	0.4	3.4	2.4
UNT1SouthSandyRun_01	0.5	0.23	0.33	5.19	0.061	0.5	0.5	0.5	1.7	0.9
UNT1WoodlandCrk_01	3.4	0.25	0.35	6.38	0.044	0.4	0.4	0.4	3.8	2.9
UNT2ASSandyRun	0.1	0.24	0.34	4.49	0.068	0.8	0.8	0.8	1.2	0.5
UNT2BlackCrk_01	0.8	0.24	0.34	5	0.065	1.1	1.1	1.1	2.9	1.8
UNT2BluffCrk_01	3.3	0.2	0.28	7.54	0.034	0.2	0.2	0.2	4.5	4.0
UNT2DarlingCrk_01	0.4	0.25	0.35	4.9	0.066	0.5	0.5	0.5	1.9	1.0
UNT2DarlingCrk_02	0.5	0.25	0.35	4.71	0.068	0.5	0.5	0.5	1.9	0.9
UNT2DarlingCrk_03	0.6	0.25	0.35	4.93	0.065	0.4	0.4	0.4	2.2	1.0
UNT2SouthSandyRun_01	0.1	0.25	0.35	4.61	0.07	0.0	0.1	0.1	1.2	0.4

A1-36 | Amite River Basin Numerical Model

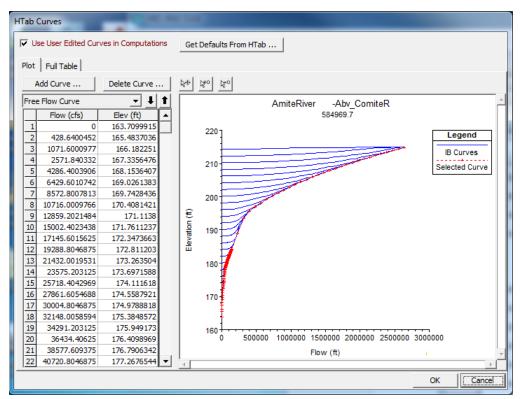
Table A1-1: HEC-HMS Mode	el Paramet	er Summa	ry							
UNT2SouthSandyRun_02	0.5	0.24	0.34	4.92	0.064	0.2	0.2	0.2	1.8	0.8
UNT3ADarlingCrk_01	0.6	0.24	0.34	5.19	0.062	0.1	0.1	0.1	2.5	1.3
UNT3BlackCrk_01	1.7	0.23	0.33	5.35	0.061	0.3	0.3	0.3	3.8	3.2
UNT3DarlingCrk_01	6.1	0.24	0.34	5.09	0.065	0.4	0.4	0.4	4.5	3.7
UNT3DarlingCrk_02	0.3	0.23	0.32	5.75	0.055	0.2	0.2	0.2	2.1	1.5
UNT3DarlingCrk_03	0.6	0.23	0.32	5.83	0.054	0.5	0.5	0.5	1.9	0.8
UNT3DarlingCrk_04	0.8	0.21	0.3	6.15	0.05	0.2	0.2	0.2	2.1	1.2
UnT3SandyC_Librt1	0.2	0.24	0.34	6.48	0.041	0.7	0.7	0.7	1.5	2.8
UnT3SandyC_Librt2	0.4	0.23	0.33	6.49	0.043	0.7	0.7	0.7	1.9	2.5
UNT3SouthSandyRun_01	0.5	0.25	0.35	4.63	0.07	0.1	0.1	0.1	1.9	1.0
UNT3SouthSandyRun_02	0.7	0.25	0.35	4.69	0.069	0.6	0.6	0.6	1.9	0.9
UNT3SouthSandyRun_03	0.7	0.25	0.35	4.78	0.067	0.4	0.4	0.4	2.0	0.9
UNT4ADarlingCrk_01	0.2	0.25	0.35	5.19	0.062	0.2	0.2	0.2	1.4	0.5
UNT4ADarlingCrk_02	0.1	0.25	0.35	5.57	0.056	0.3	0.3	0.3	1.2	0.4
UNT4DarlingCrk_01	2.2	0.25	0.36	5.15	0.064	0.1	0.1	0.1	3.7	3.0
UNT4DarlingCrk_02	0.2	0.25	0.34	5.37	0.06	0.0	0.1	0.1	2.0	1.0
UNT4DarlingCrk_03	0.2	0.23	0.33	6.24	0.048	0.0	0.1	0.1	1.6	0.6
Un_UpperWhiteByu	1.3	0.23	0.32	5.95	0.038	0.1	0.1	0.1	2.4	9.7

Table A1-1: HEC-HMS Mo	odel Paramet	er Summa	ry							
Un1LilSndyC2_DS	1.2	0.23	0.33	7.1	0.042	1.0	1.1	1.2	3.2	3.5
Un1LilSndyC2_US	0.2	0.25	0.35	6.57	0.042	0.5	0.5	0.5	1.7	1.1
Un1MillC_PrideB	0.5	0.22	0.31	6.59	0.042	0.2	0.2	0.2	2.3	1.9
Un1MillC_US_LOC	0.2	0.22	0.31	6.57	0.042	0.3	0.3	0.3	1.5	1.6
Un1SandyC	0.8	0.23	0.32	6.89	0.041	0.0	0.1	0.1	3.4	3.5
Un2LilSndyC2_DS	0.6	0.23	0.32	6.62	0.041	0.2	0.2	0.2	2.3	2.1
Un2LilSndyC2_US	0.4	0.23	0.33	6.99	0.041	0.7	0.8	1.0	1.6	1.4
Un2_NBrWards_DS	0.6	0.24	0.34	6.73	0.041	39.4	39.4	45.1	0.8	0.9
Un2_NBrWards_US	0.8	0.28	0.39	8.09	0.033	35.5	36.9	41.1	1.0	1.6
Un3LilSndyC2_DS	0.7	0.23	0.33	6.57	0.042	0.5	0.5	0.5	2.2	2.6
Un3LilSndyC2_US	0.3	0.24	0.34	6.55	0.041	1.3	1.9	1.9	1.4	1.3
Un4LilSndyC2	0.7	0.23	0.32	6.53	0.041	0.7	0.7	1.1	2.4	4.0
Un4SandyC_DS	0.3	0.24	0.34	6.24	0.041	0.4	0.4	0.5	1.9	3.0
Un4SandyC_US	0.3	0.23	0.32	6.55	0.04	1.1	1.5	1.5	1.6	1.5
UpperWhiteByu_DS	0.5	0.25	0.35	7.62	0.042	1.5	1.9	2.3	2.6	2.9
UpperWhiteByu_US	0.5	0.25	0.36	7.43	0.042	2.0	2.4	2.5	1.9	1.7
UWhiteByu_Div	0.2	0.25	0.35	6.57	0.04	0.0	0.2	0.2	2.3	2.5
UWhiteByu_DW	0.9	0.25	0.36	6.55	0.042	0.5	0.5	0.6	2.4	3.1

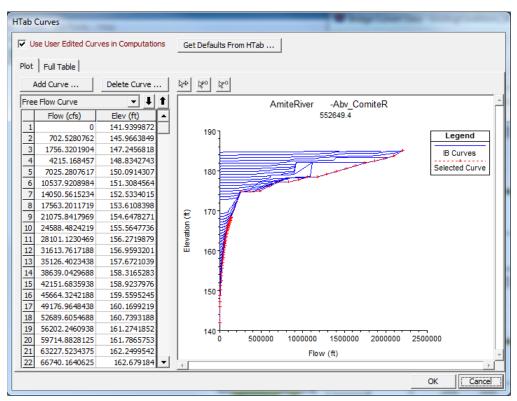
Table A1-1: HEC-HMS Mo	odel Paramet	er Summa	ry							
UWhiteByu_Hudson	3.1	0.25	0.35	6.62	0.042	1.5	2.0	2.5	3.6	5.9
UWhiteByu_HWY64	3.5	0.25	0.35	6.75	0.042	5.4	6.2	7.0	4.0	5.4
UWhiteByu_LowZac	0.9	0.25	0.35	7.08	0.041	9.3	11.0	16.4	2.2	2.4
UWhiteByu_US_Div	0.6	0.24	0.34	6.61	0.041	0.2	0.3	0.3	2.3	3.8
UWhiteByu_UT	3.5	0.25	0.36	6.87	0.042	0.8	1.1	1.3	3.9	6.3
WardsCr_Bluebon	0.8	0.32	0.45	9.69	0.023	43.6	54.5	66.9	1.0	1.1
WardsCr_Choctaw	1.0	0.28	0.4	8.21	0.032	43.5	43.5	44.1	0.6	1.8
WardsCr_College	1.0	0.26	0.37	7.71	0.035	22.1	25.2	26.3	1.1	1.1
WardsCr_EssenLn	1.9	0.27	0.38	7.96	0.035	28.5	36.4	36.4	1.6	2.8
WardsCr_GovtSt	2.9	0.29	0.42	8.92	0.028	44.0	44.3	48.8	1.2	2.3
WardsCr_GusYoung	0.8	0.25	0.36	7.07	0.038	45.5	48.1	50.7	0.7	1.3
WardsCr_Highland	3.6	0.24	0.33	7.03	0.039	21.0	24.5	28.9	2.0	2.7
WardsCr_I10_DS	1.2	0.23	0.32	7.84	0.039	28.9	29.4	36.4	1.8	3.0
WardsCr_I10_US	1.4	0.27	0.38	7.79	0.035	30.8	37.0	40.6	1.0	1.1
WardsCr_Manchac	1.8	0.24	0.34	7.47	0.037	28.7	28.7	31.0	1.6	2.7
WardsCr_PecueLn	2.0	0.25	0.35	7.78	0.034	39.8	39.8	43.9	1.2	1.9
WardsCr_SiegenLn	3.3	0.26	0.36	7.34	0.036	40.2	43.7	50.2	1.0	1.3
WaxDitch	0.7	0.24	0.34	6.57	0.042	25.7	35.2	40.3	1.3	2.6

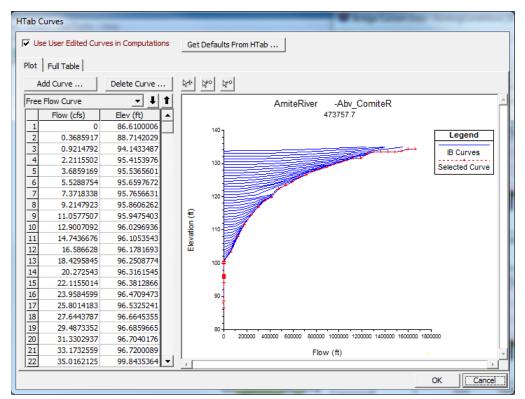
Table A1-1: HEC-HMS Mo	odel Parameto	er Summai	ry							
WClyellT1_DS_Spr	0.5	0.22	0.3	6.54	0.042	3.3	4.2	4.2	1.8	4.2
WClyellT1_Pvt	1.4	0.23	0.32	6.37	0.045	0.7	0.9	0.9	2.0	4.1
WClyellT1_SprfdR	2.5	0.22	0.31	6.54	0.042	0.6	0.7	0.8	1.7	9.8
WClyell_ArnoldR	2.4	0.23	0.32	6.56	0.042	0.6	0.7	0.7	2.3	5.4
WClyell_CnMkt	1.4	0.22	0.31	6.57	0.042	0.5	0.6	0.7	2.7	6.9
WClyell_DS_ArnId	3.2	0.23	0.32	6.54	0.042	6.3	6.5	7.4	2.4	6.5
WClyell_DS_I12	3.7	0.24	0.34	6.51	0.041	6.1	7.9	9.0	2.5	7.2
WClyell_DS_Spr	0.3	0.22	0.32	6.56	0.042	0.9	1.2	1.2	1.5	2.9
WClyell_HoodRd	2.6	0.24	0.34	6.61	0.042	2.0	2.4	3.2	2.6	7.9
WClyell_I12	3.8	0.23	0.33	6.49	0.041	9.5	12.0	12.6	2.1	4.3
WClyell_JoeMayR	3.6	0.24	0.34	6.56	0.042	6.9	8.7	12.3	2.6	7.0
WClyell_NanWes	0.7	0.21	0.3	5.96	0.05	5.0	6.9	6.9	1.8	5.0
WClyell_RR	2.1	0.23	0.33	6.51	0.042	9.4	12.7	15.7	2.5	5.3
WClyell_SprgfldR	2.2	0.22	0.31	6.55	0.042	0.6	0.9	1.0	2.2	7.8
WeinerCr_DS	1.7	0.28	0.39	8.06	0.031	50.1	55.5	55.5	0.8	1.1
WeinerCr_I12	0.2	0.31	0.44	9.15	0.027	54.6	60.8	67.7	0.7	1.1
WeinerCr_US	0.5	0.31	0.43	9.02	0.027	51.4	52.2	58.2	0.6	0.6
WelshGullyT1	0.3	0.26	0.37	6.57	0.039	9.3	10.0	11.6	1.6	1.9

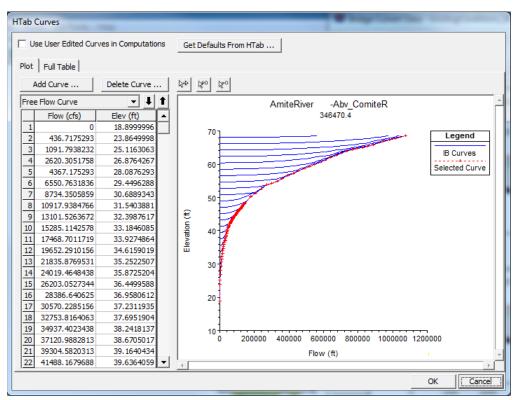
Table A1-1: HEC-HMS Mo	odel Paramete	er Summa	ry							
WelshGul_Manchac	0.4	0.21	0.3	6.96	0.041	3.9	3.9	3.9	2.0	2.0
WelshGul_NrPrair	1.5	0.26	0.36	6.57	0.039	25.1	29.9	32.9	1.7	3.6
WestForkAmite_01	33.1	0.27	0.38	6.27	0.046	0.6	0.6	0.6	8.0	11.6
WestForkAmite_02	64.2	0.27	0.37	5.88	0.052	0.3	0.3	0.3	12.6	22.2
WestForkAmite_03	53.6	0.27	0.38	5.87	0.052	0.7	0.7	0.7	9.2	12.6
WestForkAmite_04	38.6	0.26	0.37	5.91	0.05	0.3	0.3	0.3	11.7	18.0
WFrkBeaverC2_Spr	0.9	0.23	0.32	6.44	0.043	16.5	19.0	23.4	2.1	5.0
WFrkBeaverC2_US	0.3	0.22	0.3	5.88	0.048	14.9	14.9	14.9	1.6	3.8
WindByu_Jackson	0.5	0.23	0.32	6.57	0.042	0.6	0.8	1.0	1.9	2.5
WindByu_LSC2	0.7	0.23	0.33	6.48	0.043	0.5	0.5	0.7	2.9	3.5
WindByu_Milldale	1.1	0.24	0.34	6.55	0.042	0.4	0.4	0.4	2.5	4.2
WindByu_PeairsRd	0.7	0.23	0.32	6.52	0.041	0.9	1.2	1.2	1.9	1.8
WLatCypB_ScotZac	1.9	0.25	0.36	7.91	0.038	16.2	20.4	26.4	2.6	7.2
WLatCypB_US_LOC	0.3	0.24	0.34	7.96	0.041	0.1	0.1	0.2	2.1	4.7
WoodlandCrk_01	0.2	0.25	0.35	6.5	0.041	0.8	0.8	0.8	1.6	0.9
WoodlandCrk_02	1.8	0.25	0.35	6.32	0.044	0.2	0.2	0.2	3.0	2.0
WoodlandCrk_03	0.6	0.23	0.32	6.92	0.04	0.1	0.1	0.1	2.6	1.5
WoodlandCrk_04	0.4	0.23	0.32	6.99	0.039	0.4	0.4	0.4	2.1	1.0


Table A1-1: HEC-HMS Model Parameter Summary											
WoodlandCrk_05	2.1	0.25	0.35	6.57	0.042	0.2	0.2	0.2	2.9	1.7	
WoodlandCrk_06	1.4	0.24	0.34	6.6	0.042	0.0	0.1	0.1	3.3	2.0	
WoodlandCrk_07	1.1	0.22	0.3	6.69	0.041	0.0	0.1	0.1	4.0	3.6	

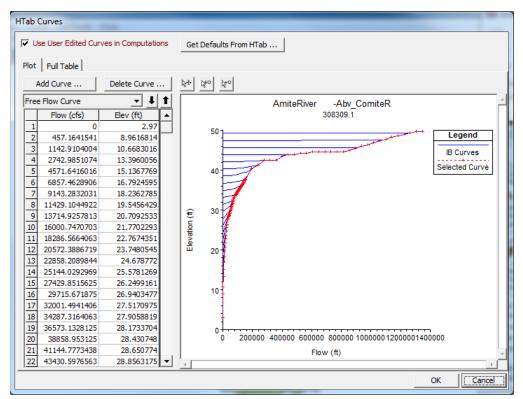
APPENDIX 2: HTAB CURVES FOR BRIDGES IN THE DYNAMIC ARB HEC-RAS MODEL


HTab Curves for Bridges in the Dynamic ARB HEC-RAS Model

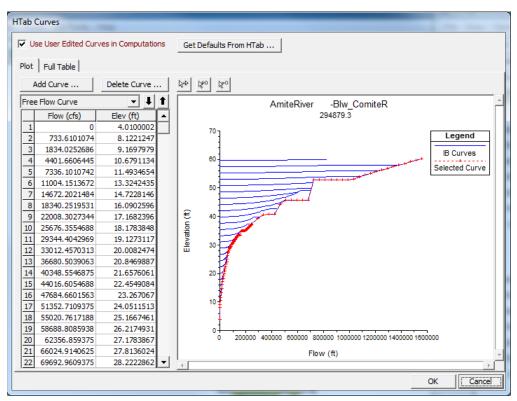



Highway 432, Amite River, Abv ComiteR, Sta: 584969.7

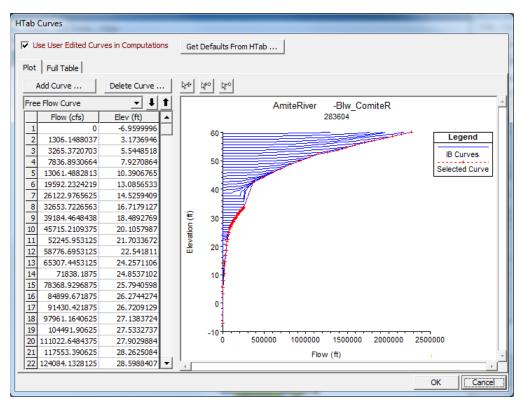
Highway 10, Amite River, Abv_ComiteR, Sta: 552649.4

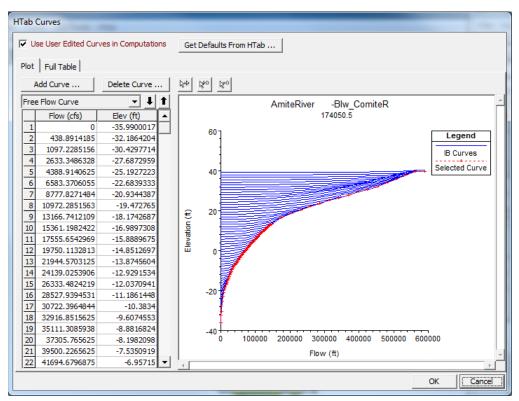


Highway 37/63, Amite River, Abv_ComiteR, Sta: 473757.7

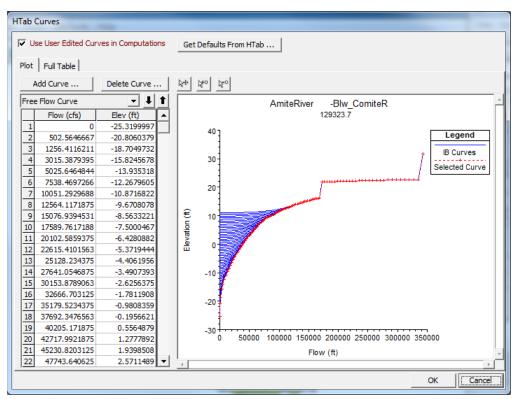


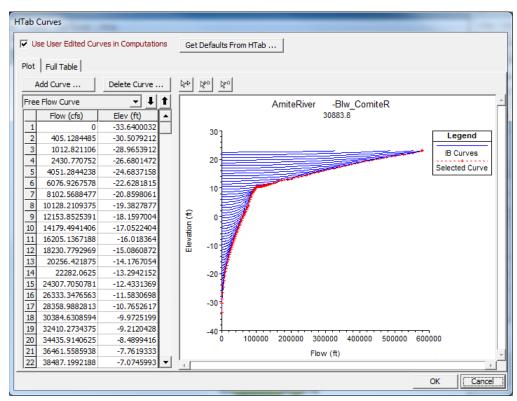
Magnolia Bridge Road, Amite River, Abv_ComiteR, Sta: 346470.4

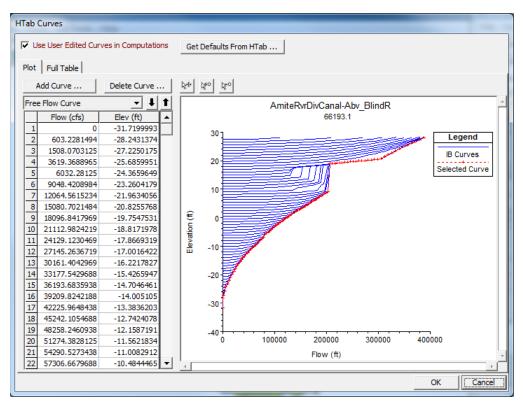


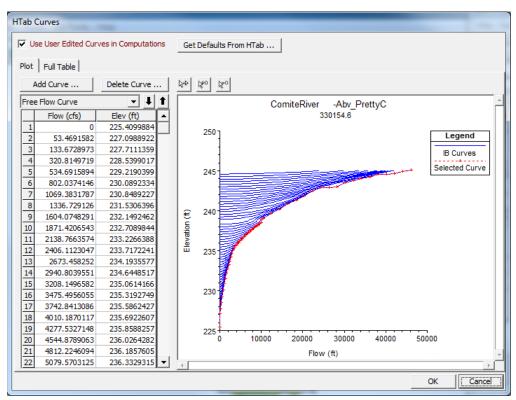

Railroad, Amite River, Abv ComiteR, Sta: 308309.1

Florida Blvd/Ave, Amite River, Blw_ComiteR, Sta: 294879.3

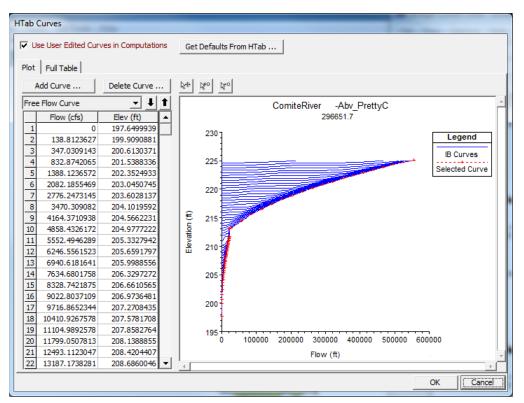

Interstate 12, Amite River, Blw_ComiteR, Sta: 283604


Highway 42, Amite River, Blw_ComiteR, Sta: 174050.5

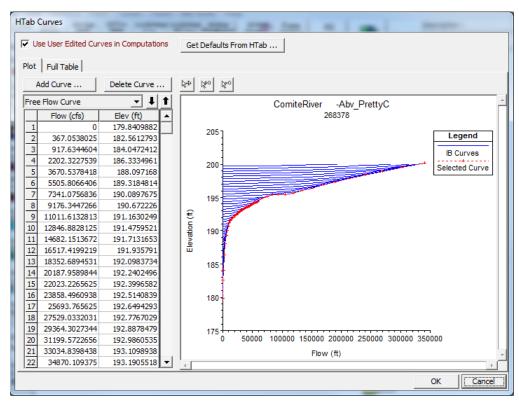



Highway 16, Amite River, Blw_ComiteR, Sta: 129323.7

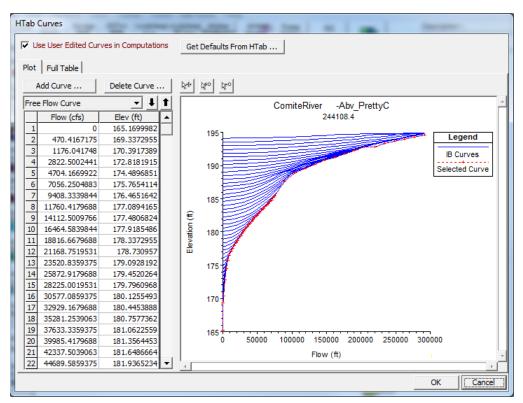
Highway 22, Amite River, Blw_ComiteR, Sta: 30883.8

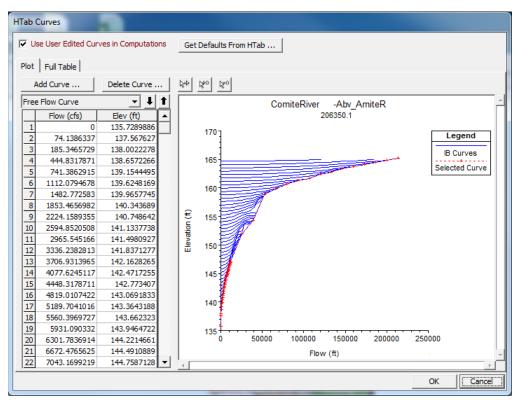


Highway 22, AmiteRvrDivCanal, Abv_BlindR, Sta: 66193.1

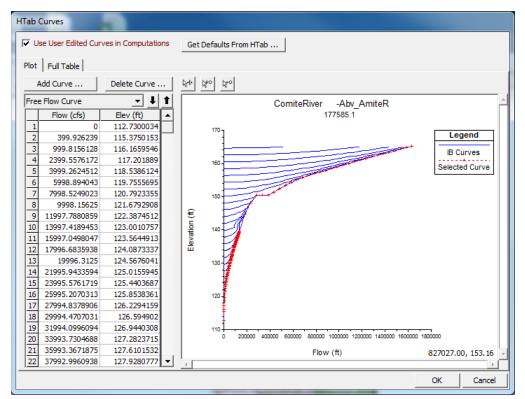


Highway 422 Azalea Street, Comite River, Abv_PrettyC, Sta: 330154.6



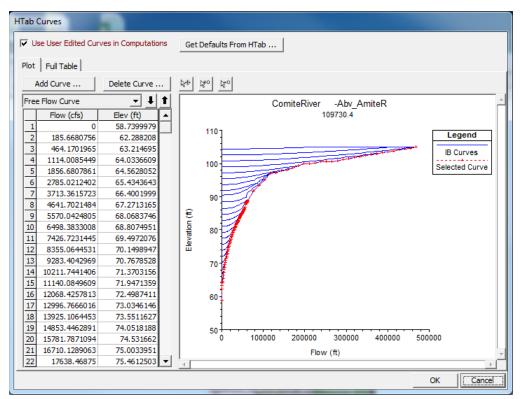

Carruth Road, Comite River, Abv_PrettyC, Sta: 296651.7

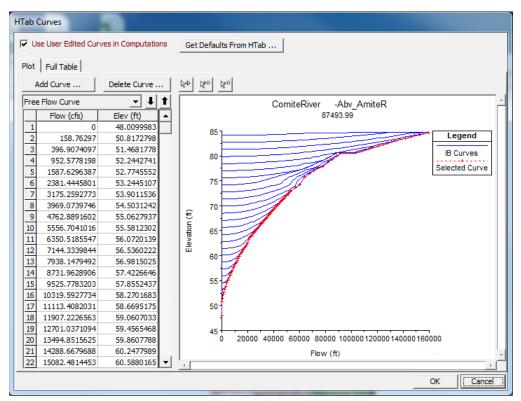
Wilson-Clinton Road, Comite River, Abv_PrettyC, Sta: 268378



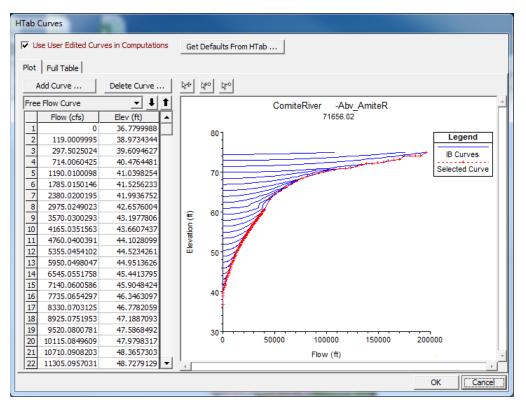
Highway 10, Comite River, Abv_PrettyC, Sta: 244108.4

Overton Ford Road, Comite River, Abv_AmiteR, Sta: 206350.1

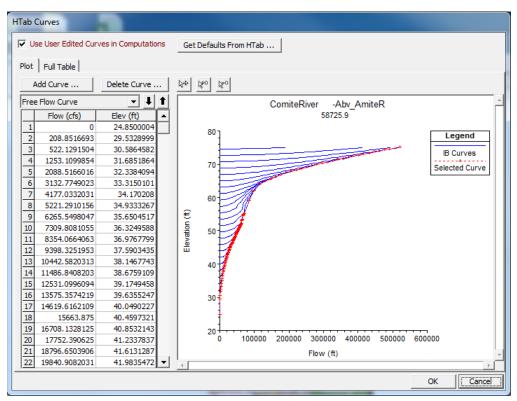



Highway 67, Comite River, Abv AmiteR, Sta: 177585.1

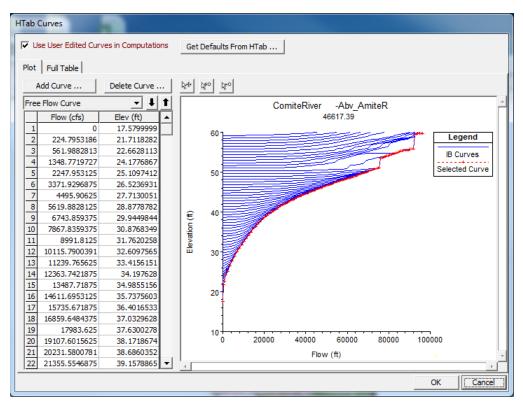
Port Hudson Pride Road, Comite River, Abv_AmiteR, Sta: 151006.8

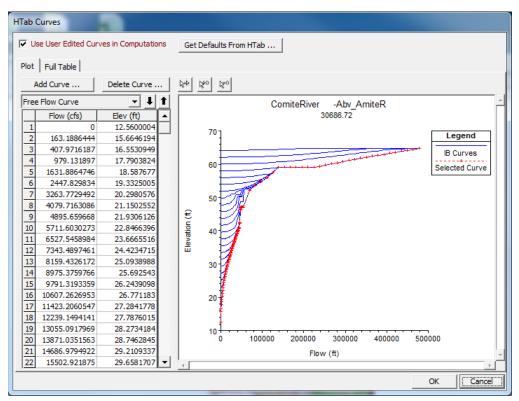


Zachary Deerford Road, Comite River, Abv AmiteR, Sta: 109730.4

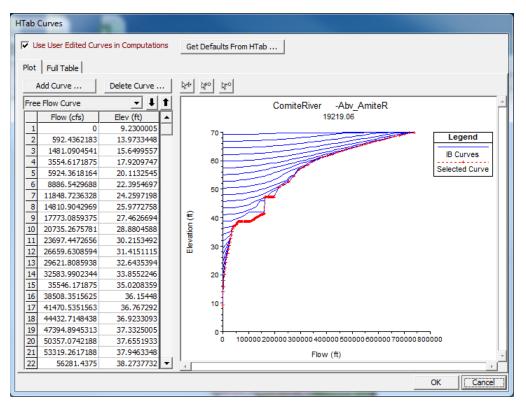


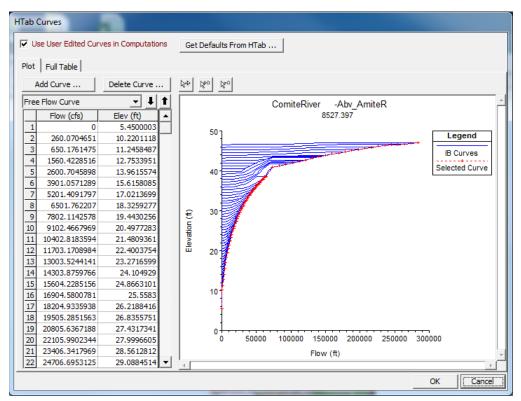
Dyer Road, Comite River, Abv_AmiteR, Sta: 87493.99

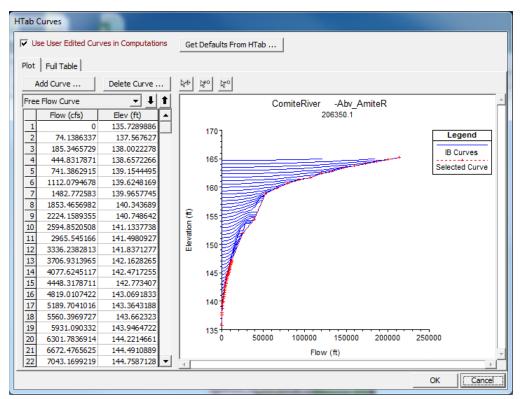


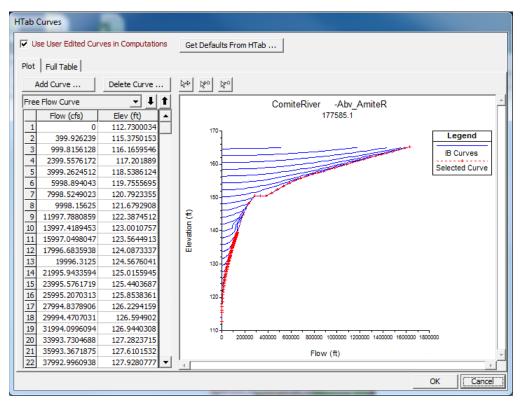

Comite Drive, Comite River, Abv_AmiteR, Sta: 71656.02

Highway 408 Hooper Street, Comite River, Abv_AmiteR, Sta: 58725.9

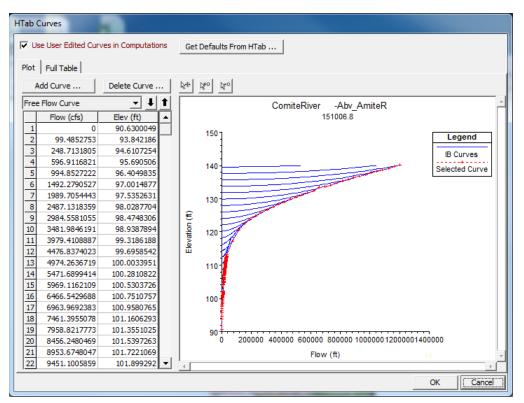

Highway 946 Joor Road, Comite River, Abv_AmiteR, Sta: 46617.39


Highway 37 Greenwell Springs Road, Comite River, Abv_AmiteR, Sta: 30686.72

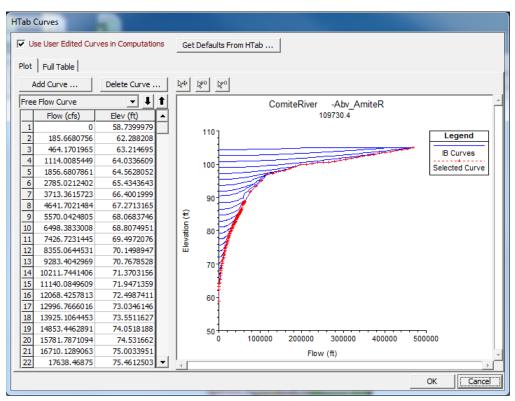



Central Throughway, Comite River, Abv_AmiteR, Sta: 19219.06

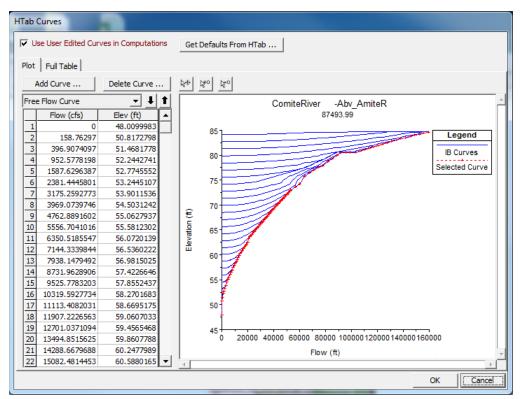
Railroad, Comite River, Abv_AmiteR, Sta: 8527.397

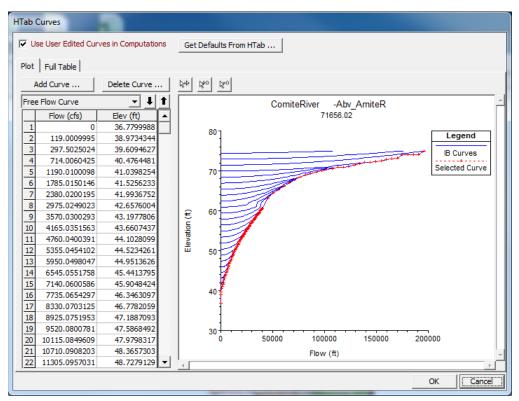


Overton Ford Road, Comite River, Abv_AmiteR, Sta: 206350.1

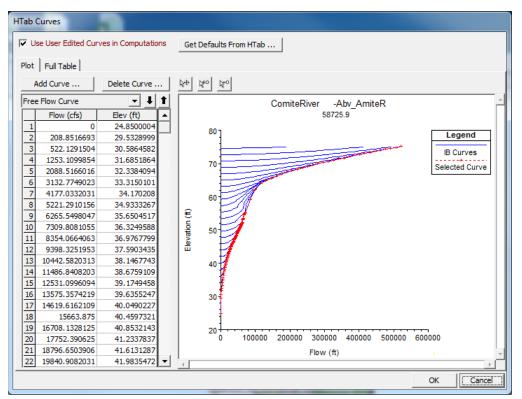


Highway 67, Comite River, Abv_AmiteR, Sta: 177585.1

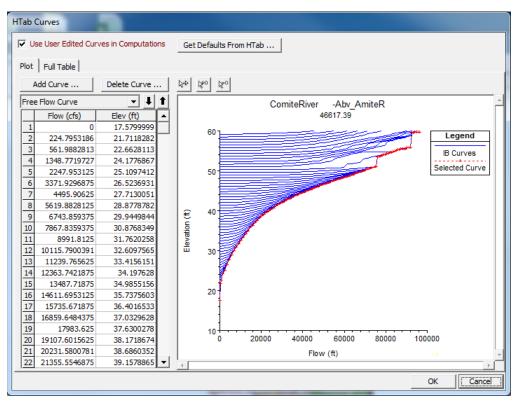



Port Hudson Pride Road, Comite River, Abv_AmiteR, Sta: 151006.8

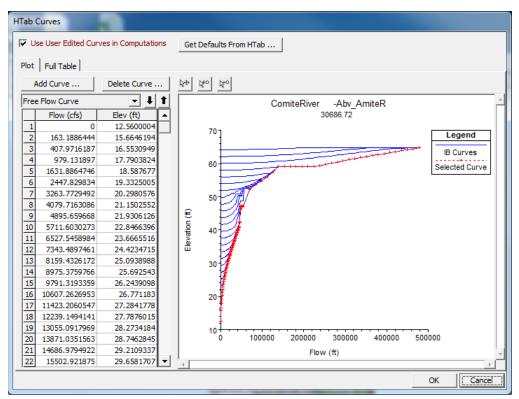
Zachary Deerford Road, Comite River, Abv_AmiteR, Sta: 109730.4

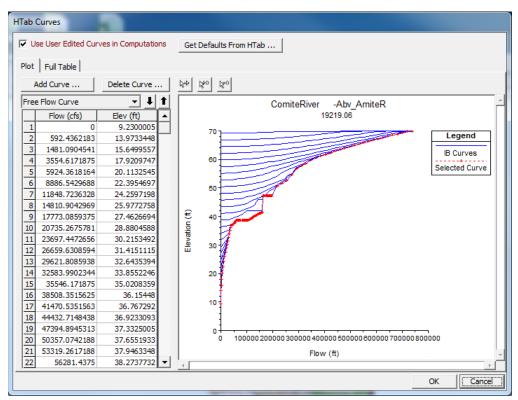


Dyer Road, Comite River, Abv_AmiteR, Sta: 87493.99

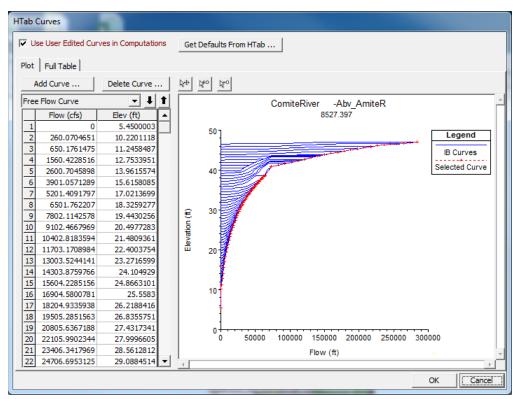


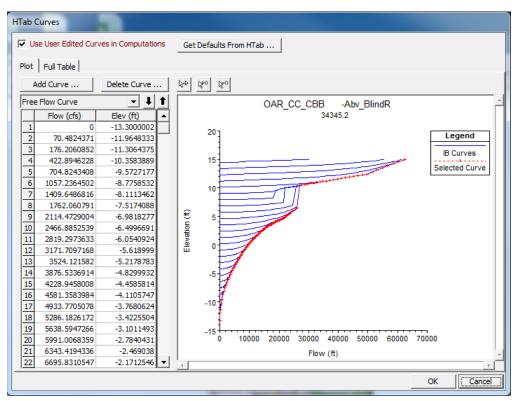
Comite Drive, Comite River, Abv_AmiteR, Sta: 71656.02

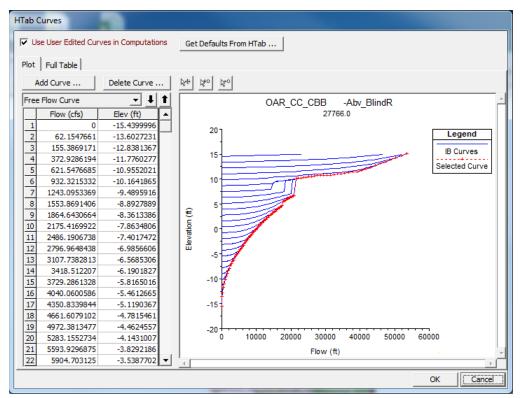


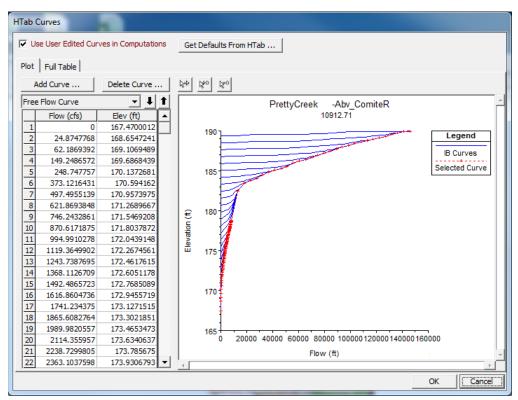

Highway 408 Hooper Street, Comite River, Abv AmiteR, Sta: 58725.9

Highway 946 Joor Road, Comite River, Abv_AmiteR, Sta: 46617.39

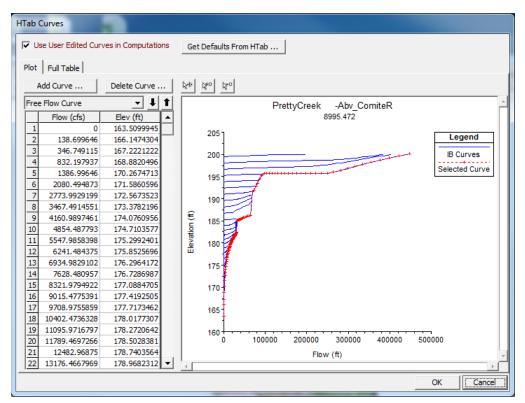

Highway 37 Greenwell Springs Road, Comite River, Abv AmiteR, Sta: 30686.72


Central Throughway, Comite River, Abv_AmiteR, Sta: 19219.06




Railroad, Comite River, Abv AmiteR, Sta: 8527.397

Bridge, OAR_CC_CBB, Abv_BlindR, Sta: 34345.2



Highway 22, OAR_CC_CBB, Abv_BlindR, Sta: 27766.0

Woodville Street, Pretty Creek, Abv_ComiteR, Sta: 10912.71

Highway 10, Pretty Creek, Abv_ComiteR, Sta: 8995.472

APPENDIX 3: HEC-SSP STATISTICAL ANALYSIS REPORTS

HEC-SSP Statistical Analysis Reports

USGS 07376679 East Amite R near Peoria, MS

```
Regional Skew: 0.037
Regional Skew MSE: 0.3025
Plotting Position Type: Hirsch-Stedinger
Upper Confidence Level: 0.1
Lower Confidence Level: 0.9
Use non-standard frequencies
Frequency: 0.2
Frequency: 0.5
Frequency: 1.0
Frequency: 2.0
Frequency: 4.0
Frequency: 10.0
Frequency: 20.0
Frequency: 50.0
Frequency: 80.0
Frequency: 90.0
Frequency: 95.0
Frequency: 99.0
Display ordinate values using 1 digits in fraction part of value
--- End of Input Data ---
<< EMA Representation of Data >>
EAST FORK AMITE RIVER-PEORIA, MS-FLOW-ANNUAL PEAK
                                     | Value |
                                                                                                           Threshold
 | Year
                   Peak | Low High | Low High
 | Type |
 |-----|
---|----|
| 1990 | 34,000.0 | 34,000.0 | 34,000.0 | 4,700.0 | 1.0E99 | Hist | 1991 | --- | 1.0E-99 | 34,000.0 | 34,000.0 | 1.0E99 | Cens | 1992 | --- | 1.0E-99 | 34,000.0 | 34,000.0 | 1.0E99 | Cens | 1993 | --- | 1.0E-99 | 34,000.0 | 34,000.0 | 1.0E99 | Cens | 1994 | --- | 1.0E-99 | 34,000.0 | 34,000.0 | 1.0E99 | Cens | 1995 | --- | 1.0E-99 | 34,000.0 | 34,000.0 | 1.0E99 | Cens | 1996 | --- | 1.0E-99 | 34,000.0 | 34,000.0 | 1.0E99 | Cens | 1997 | --- | 1.0E-99 | 34,000.0 | 34,000.0 | 1.0E99 | Cens | 1998 | 16,000.0 | 16,000.0 | 34,000.0 | 1.0E99 | Cens | 1998 | 16,000.0 | 16,000.0 | 4,700.0 | 1.0E99 | Syst | 1999 | 9,500.0 | 9,500.0 | 9,500.0 | 4,700.0 | 1.0E99 | Syst | 12000 | 1,500.0 | 1.0E-6 | 4,700.0 | 4,700.0 | 1.0E99 | Syst | 12001 | 8,580.0 | 8,580.0 | 8,580.0 | 4,700.0 | 1.0E99 | Syst | 12002 | 15,700.0 | 15,700.0 | 15,700.0 | 4,700.0 | 1.0E99 | Syst | 12003 | 23,300.0 | 23,300.0 | 23,300.0 | 4,700.0 | 1.0E99 | Syst |
```

A3-2 |

	2004	13,400.0		13,400.0	13,400.0	4,700.0	1.0E99 Syst
	2005	15,600.0		15,600.0	15,600.0	4,700.0	1.0E99 Syst
	2006	1,450.0		1.0E-6	4,700.0	4,700.0	1.0E99 Syst
	2007	9,360.0		9,360.0	9,360.0	4,700.0	1.0E99 Syst
	2008	6,890.0		6,890.0	6,890.0	4,700.0	1.0E99 Syst
	2009	13,300.0		13,300.0	13,300.0	4,700.0	1.0E99 Syst
-	2010	4,700.0	1	4,700.0	4,700.0	4,700.0	1.0E99 Syst
-	2011	9,010.0		9,010.0	9,010.0	4,700.0	1.0E99 Syst
	2012	12,400.0		12,400.0	12,400.0	4,700.0	1.0E99 Syst
	2013	12,200.0		12,200.0	12,200.0	4,700.0	1.0E99 Syst
	2014	13,800.0		13,800.0	13,800.0	4,700.0	1.0E99 Syst
	2015	5,450.0		5,450.0	5,450.0	4,700.0	1.0E99 Syst
	2016	18,100.0		18,100.0	18,100.0	4,700.0	1.0E99 Syst
-	2017	5,800.0		5,800.0	5,800.0	4,700.0	1.0E99 Syst
ı							
				·			

---|----|

Fitted log10 Moments Std Dev Skew		Mean	Variance
EMA at-site data w/o 0.068810 0.262317	2	4.007546	
EMA w/ regional info 0.066101 0.257100	and B17b MSE(G)	4.008400	
EMA w/ regional info 0.066101 0.257100	and specified MSE(G) -0.116642	4.008400	
0.066101 0.257100 EMA w/ regional info	-0.116642 and specified MSE(G)		

EMA Estimate of MSE[G at-site]	0.205469
MSE[G at-site systematic]	0.274092
Effective Record Length [G at-site]	26.679629
Grubbs-Beck Critical Value	4,700.000000

--- Final Results ---

<< Plotting Positions >>

EAST FORK AMITE RIVER-PEORIA, MS-FLOW-ANNUAL PEAK

		Ever	nts An	alyzed			Order	ed Events		
				FLOW			Water	FLOW	H-S	
	Day	Mon	Year	CFS		Rank	Year	CFS	Plot Pos	
- -					- -					-
	25	Jan	1990	34,000.0		1	1990	34,000.0	1.79	
	01	Jan	1991			2	2003	23,300.0	8.14	
	01	Jan	1992			3	2016	18,100.0	12.71	
	01	Jan	1993			4	1998	16,000.0	17.27	

1	01 J	an	1994			5	2002	15,700.0	21.84	
	01 J	an	1995			6	2005	15,600.0	26.41	
	01 J	an	1996			7	2014	13,800.0	30.98	
	01 J	an	1997			8	2004	13,400.0	35.55	
	07 J	an	1998	16,000.0		9	2009	13,300.0	40.11	
	14 M	lar	1999	9,500.0		10	2012	12,400.0	44.68	
	03 A	pr	2000	1,500.0		11	2013	12,200.0	49.25	
	03 M	lar	2001	8,580.0		12	1999	9,500.0	53.82	
	26 S	ep	2002	15,700.0		13	2007	9,360.0	58.38	
	22 F	'eb	2003	23,300.0		14	2011	9,010.0	62.95	
	05 F	'eb	2004	13,400.0		15	2001	8,580.0	67.52	
	01 A	pr	2005	15,600.0		16	2008	6,890.0	72.09	
	16 D	ec	2005	1,450.0		17	2017	5,800.0	76.65	
	28 0	ct	2006	9,360.0		18	2015	5,450.0	81.22	
	03 S	ep	2008	6,890.0		19	2010	4,700.0	* 85.79	
	28 M	lar	2009	13,300.0		20	2000	1,500.0	* 92.06	
	19 D	ec	2009	4,700.0		21	2006	1,450.0	* 96.73	
	09 M	lar	2011	9,010.0		22	1997	7	*	
	31 A	ug	2012	12,400.0		23	1996	5	*	
	12 F	'eb	2013	12,200.0		24	1995		*	
	21 F	'eb	2014	13,800.0		25	1994			
	10 M	lar	2015	5,450.0		26	1993		*	
	11 M	lar	2016	18,100.0		27	1992			
1	04 A	pr	2017	5,800.0		28	1991		*	
-					- -				 * Outlie	 r

^{*} Low outlier plotting positions are computed using Median parameters.

<< Frequency Curve >> EAST FORK AMITE RIVER-PEORIA, MS-FLOW-ANNUAL PEAK

	Computed Curve FLOW,	Variance Log(EMA) CFS	Percent Chance Exceedance	Confidence 0.10 FLOW, C	0.90
	51,531.9 43,900.6 38,403.5 33,128.5 28,055.4 21,602.8 16,831.0 10,313.3 6,217.3 4,741.0 3,777.1	0.01985 0.01469 0.01147 0.00882 0.00672 0.00472 0.00375 0.00335 0.00511 0.00780 0.01165	0.200 0.500 1.000 2.000 4.000 10.000 20.000 50.000 80.000 90.000	90,681.0 70,568.1 57,870.9 46,989.1 37,646.2 27,230.0 20,476.1 12,262.8 7,452.6 5,799.1 4,767.0	36,831.0 32,681.4 29,427.8 26,069.5 22,602.4 17,846.9 14,095.7 8,600.5 4,627.7 3,116.1 2,191.1
 -	2,445.3	0.02511	99.000	3,399.8	1,078.4

	Log Transform FLOW, CFS	m:		Number of Events			
-			- -				
	Mean	4.008		Historic Events		1	
	Standard Dev	0.257		High Outliers	0		
	Station Skew	-0.321		Low Outliers	2		
	Regional Skew	0.037		Zero Events	0		
	Weighted Skew	-0.117		Missing Events	7		
	Adopted Skew	-0.117		Systematic Events		20	
				Historic Period		28	
-			- -				

--- End of Analytical Frequency Curve ---

USGS 07377000 Amite River near Darlington, LA

Regional Skew: 0.038
Regional Skew MSE: 0.302

Plotting Position Type: Hirsch-Stedinger

Upper Confidence Level: 0.1 Lower Confidence Level: 0.9

Use non-standard frequencies

Frequency: 0.2
Frequency: 0.5
Frequency: 1.0
Frequency: 2.0
Frequency: 4.0
Frequency: 10.0
Frequency: 50.0
Frequency: 50.0
Frequency: 90.0
Frequency: 90.0
Frequency: 95.0
Frequency: 95.0
Frequency: 99.0

Display ordinate values using 1 digits in fraction part of value

--- End of Input Data ---

<< EMA Representation of Data >>
AmDarling2019-Darlington, LA-FLOW-ANNUAL PEAK

ļ.		1	Value	Threshold			
 Year Type		Low	Hi	gh	Low	High	
 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972	20,000.0 43,400.0 31,600.0 3,180.0 18,900.0 3,280.0 55,700.0 20,400.0 20,200.0 22,400.0 6,900.0 9,800.0 37,900.0 15,400.0 4,530.0 44,500.0 44,500.0 20,000.0 39,300.0 8,000.0 8,600.0 3,630.0 10,100.0	20,000.0 43,400.0 31,600.0 1.0E-6 18,900.0 1.0E-6 55,700.0 20,400.0 20,200.0 22,400.0 1.0E-6 1.0E-6 37,900.0 1.0E-6 44,500.0 44,500.0 20,000.0 39,300.0 1.0E-6 1.0E-6 1.0E-6 1.0E-6 1.0E-6 1.0E-6 1.0E-6	20,000.0 43,400.0 31,600.0 12,300.0 12,300.0 12,300.0 55,700.0 20,400.0 20,200.0 22,400.0 12,300.0	12,300.0 12,300.0	1.0E99	Syst	
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1998 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 1998 1999 1999 1000 2001 2002 2003 2004	62,100.0 22,400.0 40,700.0 7,660.0 76,400.0 43,400.0 47,500.0 8,320.0 18,100.0 63,300.0 13,000.0 21,200.0 21,200.0 21,200.0 22,000.0 16,000.0 19,500.0 26,900.0 19,400.0 26,900.0 26,900.0 26,900.0 27,800.0 23,300.0 27,800.0 24,100.0 39,300.0 27,800.0 24,100.0 39,600.0 29,600.0 29,600.0 29,600.0 29,600.0 37,600.0 16,800.0	62,100.0 22,400.0 40,700.0 1.0E-6 76,400.0 30,500.0 43,400.0 47,500.0 1.0E-6 18,100.0 63,300.0 13,000.0 1.0E-6 17,500.0 21,200.0 22,000.0 16,000.0 19,500.0 26,900.0 19,400.0 60,800.0 23,300.0 16,200.0 24,100.0 24,100.0 1.0E-6 29,600.0 1.0E-6 37,600.0 16,800.0	62,100.0 22,400.0 40,700.0 12,300.0 76,400.0 30,500.0 43,400.0 47,500.0 12,300.0 13,000.0 12,300.0 12,300.0 12,300.0 12,300.0 12,300.0 12,300.0 12,300.0 12,300.0 14,000.0 19,500.0 26,900.0 19,400.0 26,900.0 19,400.0 23,300.0 23,300.0 23,300.0 24,100.0 24,100.0 29,600.0 12,300.0 29,600.0 12,300.0 37,600.0 16,800.0	12,300.0 12,300.0	1.0E99 1.0E99 1.0E99 1.0E99 1.0E99 1.0E99 1.0E99 1.0E99	Syst Syst	

	2005	5,740.0	-	1.0E-6	12,300.0		12,300.0	1.0E99	Syst	
- [2006	2,860.0		1.0E-6	12,300.0		12,300.0	1.0E99	Syst	
	2007	10,000.0		1.0E-6	12,300.0		12,300.0	1.0E99	Syst	
	2008	33,400.0		33,400.0	33,400.0		12,300.0	1.0E99	Syst	
	2009	33,000.0		33,000.0	33,000.0		12,300.0	1.0E99	Syst	
	2010	9,990.0		1.0E-6	12,300.0		12,300.0	1.0E99	Syst	
	2011	15,300.0		15,300.0	15,300.0		12,300.0	1.0E99	Syst	
	2012	19,600.0		19,600.0	19,600.0		12,300.0	1.0E99	Syst	
	2013	31,100.0		31,100.0	31,100.0		12,300.0	1.0E99	Syst	
	2014	20,900.0		20,900.0	20,900.0		12,300.0	1.0E99	Syst	
	2015	12,300.0		12,300.0	12,300.0		12,300.0	1.0E99	Syst	
	2016	116,000.0		116,000.0	116,000.0		12,300.0	1.0E99	Syst	
- [2017	10,040.0		1.0E-6	12,300.0		12,300.0	1.0E99	Syst	
			-			-				

Fitted log10 Moments Std Dev Skew	Mean	Variance
EMA at-site data w/o regional info 0.127939 0.357685 -0.336054	4.295143	
EMA w/ regional info and B17b MSE(G) 0.118987	4.302085	
EMA w/ regional info and specified MSE(G) 0.118987	4.302085	

EMA Estimate of MSE[G at-site]	0.095865
MSE[G at-site systematic]	0.095865
Effective Record Length [G at-site]	69.000000
Grubbs-Beck Critical Value	12,300.000000

--- Final Results ---

<< Plotting Positions >> AmDarling2019-Darlington, LA-FLOW-ANNUAL PEAK

	Events Analyzed					Ordered Events				
				FLOW			Water	FLOW	H-S	
	Day	Mon	Year	CFS		Rank	Year	CFS	Plot Pos	
-					- -					
	28	Feb	1949	20,000.0		1	2016	116,000.0	1.42	
	07	Jan	1950	43,400.0		2	1990	104,000.0	2.84	
	30	Mar	1951	31,600.0		3	1977	76,400.0	4.26	
	21	Dec	1951	3,180.0		4	1983	63,300.0	5.68	
	20	May	1953	18,900.0		5	1973	62,100.0	7.10	
	16	Jan	1954	3,280.0		6	1994	60,800.0	8.53	

1	13 Apr 1955	55,700.0	1 7	1955	55,700.0	9.95	1
	12 Mar 1956	20,400.0	8	1980	47,500.0	11.37	
							- 1
	29 Jun 1957	20,200.0	9	1972	45,500.0	12.79	!
	23 Sep 1958	22,400.0	10	1965	44,500.0	14.21	
	03 Feb 1959	6,900.0	11	1964	44,500.0	15.63	ı
	19 Dec 1959	9,800.0	12	1979	43,400.0	17.05	
	18 Mar 1961	37 , 900.0	13	1950	43,400.0	18.47	
	28 Apr 1962	15,400.0	14	1975	40,700.0	19.89	
	21 Jan 1963	4,530.0	15	1997	39,300.0	21.31	
	03 Mar 1964	44,500.0	16	1967	39,300.0	22.73	
	05 Oct 1964	44,500.0	17	1961	37,900.0	24.15	
	13 Feb 1966	20,000.0	18	2003	37,600.0	25.58	
	15 Apr 1967	39,300.0	19	2008	33,400.0	27.00	
	17 Dec 1967	8,000.0	20	2009	33,000.0	28.42	- 1
	14 Apr 1969	8,600.0	21	1951	31,600.0	29.84	1
	21 Mar 1970	3,630.0	22	2013	31,100.0	31.26	1
i	18 Sep 1971	10,100.0	23	1978	30,500.0	32.68	i
i	07 Dec 1971	45,500.0	24	2001	29,600.0	34.10	i
i	25 Mar 1973	62,100.0	25	1998	27,800.0	35.52	i
i	14 Apr 1974	22,400.0	26	1992	26,900.0	36.94	i
i	09 Jun 1975	40,700.0	27	1999	24,100.0	38.36	i
i	01 Apr 1976	7,660.0	28	1995	23,300.0	39.78	i
i	22 Apr 1977	76,400.0	29	1974	22,400.0	41.20	i
i	30 Nov 1977	30,500.0	30	1958	22,400.0	42.63	i
i	23 Apr 1979	43,400.0	31	1988	22,000.0	44.05	
	28 Mar 1980	47,500.0	32	1987	21,200.0	45.47	
	11 Dec 1980	8,320.0	33	2014	20,900.0	46.89	
	17 Feb 1982	18,100.0	34	1956	20,400.0	48.31	1
	07 Apr 1983	63,300.0	35	1957	20,400.0	49.73	- 1
	_	13,000.0	35	1966	20,200.0	51.15	
	14 Feb 1984	8,970.0	37	1949	20,000.0	52.57	
	27 Feb 1985				19,600.0		
	30 Oct 1985	17,500.0	38	2012	· ·	53.99	- 1
	01 Mar 1987	21,200.0	39	1991	19,500.0	55.41	-
	03 Apr 1988	22,000.0	40	1993	19,400.0	56.83	!
	20 May 1989	16,000.0	41	1953	18,900.0	58.26	
	25 Jan 1990	104,000.0	42	1982	18,100.0	59.68	
	01 May 1991	19,500.0	43	1986	17,500.0	61.10	!
	06 Mar 1992	26,900.0	44	2004	16,800.0	62.52	!
	21 Jan 1993	19,400.0	45	1996	16,200.0	63.94	!
	28 Jan 1994	60,800.0	46	1989	16,000.0	65.36	!
	12 Apr 1995	23,300.0	47	1962	15,400.0	66.78	
	19 Dec 1995	16,200.0	48	2011	15,300.0	68.20	-
	28 Apr 1997	39,300.0	49	1984	13,000.0	69.62	-
	08 Jan 1998	27,800.0	50	2015	12,300.0*	71.04	
	14 Mar 1999	24,100.0	51	1971	10,100.0*	73.05	
	04 Apr 2000	3,010.0	52	2017	10,040.0*	74.50	
	08 Jun 2001	29,600.0	53	2007	10,000.0*	75.94	
	28 Sep 2002	9,890.0	54	2010	9,990.0*	77.38	
	23 Feb 2003	37,600.0	55	2002	9,890.0*	78.82	
	13 Feb 2004	16,800.0	56	1960	9,800.0*	80.26	
	02 Feb 2005	5,740.0	57	1985	8,970.0*	81.70	
	03 Feb 2006	2,860.0	58	1969	8,600.0*	83.14	

	28 Oct	2006	10,000.0		59	1981	8,320.0*	84.58	
	03 Sep	2008	33,400.0		60	1968	8,000.0*	86.02	
	29 Mar	2009	33,000.0		61	1976	7,660.0*	87.46	
	16 Oct	2009	9,990.0		62	1959	6,900.0*	88.90	
	10 Mar	2011	15,300.0		63	2005	5,740.0*	90.35	
	01 Sep	2012	19,600.0		64	1963	4,530.0*	91.79	
	13 Feb	2013	31,100.0		65	1970	3,630.0*	93.23	
	22 Feb	2014	20,900.0		66	1954	3,280.0*	94.67	
	03 Mar	2015	12,300.0		67	1952	3,180.0*	96.11	
	12 Aug	2016	116,000.0		68	2000	3,010.0*	97.55	
	04 Apr	2017	10,040.0		69	2006	2,860.0*	98.99	
-				- -					

^{*} Low outlier plotting positions are computed using Median parameters.

<< Frequency Curve >>
AmDarling2019-Darlington, LA-FLOW-ANNUAL PEAK

	Computed Curve FLOW,	Variance Log(EMA) CFS		Percent Chance Exceedance	 		Confidence 0.10 FLOW,	0.90
	172,128.8	0.01633		0.200	 	_	280,835.0	126,187.6
i	139,554.5	0.01149		0.500	i		208,265.6	107,007.2
	117,083.4	0.00859		1.000			164,208.5	92,674.1
	96,399.2	0.00629		2.000			127,783.8	78,556.1
	77,419.7	0.00456		4.000			97,671.0	64,732.1
	54,776.6	0.00300		10.000			65,554.8	47,087.5
	39,311.1	0.00226		20.000			45,687.1	34,341.0
	20,427.6	0.00197		50.000			23,235.7	17,713.3
	10,337.1	0.00468		80.000			12,069.2	7,615.0
	7,163.5	0.00910		90.000			8,816.3	4,607.1
	5,262.2	0.01556		95.000			6,905.5	2,971.3
	2,910.2	0.03839		99.000			4,501.0	1,221.9
- 1			- -			_		

<< Systematic Statistics >> AmDarling2019-Darlington, LA-FLOW-ANNUAL PEAK

	Log Transfo FLOW, CFS		 - -	Number of Even	ts 	
	Mean Standard Dev Station Skew Regional Skew Weighted Skew Adopted Skew	4.302 0.345 -0.336 0.038 -0.142 -0.142		Historic Events High Outliers Low Outliers Zero Events Missing Events Systematic Events	0 19 0	0

* Outlier

USGS 07377300 Amite River at Magnolia, LA

Regional Skew: 0.038
Regional Skew MSE: 0.302

Plotting Position Type: Hirsch-Stedinger

Upper Confidence Level: 0.1 Lower Confidence Level: 0.9

Use non-standard frequencies

Frequency: 0.2
Frequency: 0.5
Frequency: 1.0
Frequency: 2.0
Frequency: 4.0
Frequency: 10.0
Frequency: 20.0
Frequency: 50.0
Frequency: 80.0
Frequency: 90.0
Frequency: 95.0
Frequency: 99.0

Display ordinate values using 1 digits in fraction part of value
--- End of Input Data ---

<< EMA Representation of Data >> AmDarling2019-Magnolia, LA-FLOW-ANNUAL PEAK

_											
1				Value		1	Thresh	nold	1		1
	Year	Peak		Low	High		Low	High	1	Гуре	
			-			٠ -					-
	1949	23,800.0		23,800.0	23,800.0		1.0E-99	1.0E99	5	Syst	
	1950	35,100.0		35,100.0	35,100.0		1.0E-99	1.0E99	5	Syst	
	1951	31,500.0		31,500.0	31,500.0		1.0E-99	1.0E99	5	Syst	
	1952	10,300.0		10,300.0	10,300.0		1.0E-99	1.0E99	5	Syst	
	1953	48,400.0		48,400.0	48,400.0		1.0E-99	1.0E99	5	Syst	
	1954	10,800.0		10,800.0	10,800.0		1.0E-99	1.0E99	5	Syst	
	1955	53,700.0		53,700.0	53,700.0		1.0E-99	1.0E99	5	Syst	
	1956	22,800.0		22,800.0	22,800.0		1.0E-99	1.0E99	5	Syst	
	1957	12,500.0		12,500.0	12,500.0		1.0E-99	1.0E99	5	Syst	
	1958	13,800.0		13,800.0	13,800.0		1.0E-99	1.0E99	5	Syst	
	1959	15,800.0		15,800.0	15,800.0		1.0E-99	1.0E99	5	Syst	
	1960	17,900.0		17,900.0	17,900.0		1.0E-99	1.0E99	5	Syst	
	1961	42,900.0		42,900.0	42,900.0		1.0E-99	1.0E99	5	Syst	
	1962	35,300.0		35,300.0	35,300.0		1.0E-99	1.0E99	5	Syst	
	1963	12,100.0		12,100.0	12,100.0		1.0E-99	1.0E99	5	Syst	
	1964	29,300.0		29,300.0	29,300.0		1.0E-99	1.0E99	5	Syst	
- [1965	39,200.0		39,200.0	39,200.0		1.0E-99	1.0E99	5	Syst	
- [1966	30,000.0		30,000.0	30,000.0		1.0E-99	1.0E99	5	Syst	
- 1	1967	40,400.0	1	40,400.0	40,400.0	1	1.0E-99	1.0E99	5	Syst	1
-	1968	12,100.0		12,100.0	12,100.0		1.0E-99	1.0E99	5	Syst	

	2010	21,800.0	l I	21,800.0	21,800.0	1	1.0E-99	1.0E99	Syst Syst	
	2009	33,500.0		33,500.0	33,500.0		1.0E-99	1.0E99	Syst	
-	2008	44,600.0		44,600.0	44,600.0		1.0E-99	1.0E99	Syst	
	2006	7,380.0		7,380.0	7,380.0		1.0E-99	1.0E99	Syst	
	2005	21,400.0		21,400.0	21,400.0	-	1.0E-99	1.0E99	Syst	
-	2004	27,900.0		27,900.0	27,900.0		1.0E-99	1.0E99	Syst	
	2003	44,000.0		44,000.0	44,000.0	-	1.0E-99	1.0E99	Syst	
	2002	20,500.0		20,500.0	20,500.0	-	1.0E-99	1.0E99	Syst	
	2001	51,300.0		51,300.0	51,300.0		1.0E-99	1.0E99	Syst	
-	1999	31,700.0		31,700.0	31,700.0		1.0E-99	1.0E99	Syst	
	1998	36,200.0	!	36,200.0	36,200.0		1.0E-99	1.0E99	Syst	
	1997	44,000.0		44,000.0	44,000.0	-	1.0E-99	1.0E99	Syst	
		32,200.0	1	32,200.0	32,200.0	1			Syst	
	1995	•	[•	,	1	1.0E-99 1.0E-99	1.0E99 1.0E99	Syst	
	1994	44,100.0	I I	44,100.0	44,100.0	1	1.0E-99	1.0E99	_	
	1993	54,700.0	I I	54,700.0	54,700.0	1	1.0E-99 1.0E-99	1.0E99	Syst Syst	1
	1983	59,600.0	I I	59,600.0	59,600.0	1	1.0E-99 1.0E-99	1.0E99 1.0E99	Syst Syst	1
	1982	75,700.0	I I	75,700.0	75,700.0	1	1.0E-99 1.0E-99	1.0E99 1.0E99	_	1
	1982	17,700.0	I I	17,700.0	17,700.0	1	1.0E-99 1.0E-99	1.0E99	Syst Syst	
	1981	14,300.0	l I	14,300.0	14,300.0	1	1.0E-99	1.0E99	Syst Syst	
	1979	43,400.0	I I	43,400.0	43,400.0	1	1.0E-99	1.0E99	Syst Syst	
	1976	42,600.0	I I	42,600.0	42,600.0	1	1.0E-99 1.0E-99	1.0E99	Syst Syst	
	1977	25,800.0	I I	25,800.0	25,800.0	1	1.0E-99	1.0E99	Syst Syst	
	1976	85,100.0	I I	85,100.0	85,100.0	1	1.0E-99	1.0E99	Syst Syst	
	1976	14,000.0	l I	14,000.0	14,000.0	i	1.0E-99	1.0E99	Syst Syst	
	1975	30,100.0	i I	30,100.0	30,100.0	i	1.0E-99	1.0E99	Syst Syst	1
i	1974	22,200.0	İ	22,200.0	22,200.0	i	1.0E-99	1.0E99	Syst Syst	i
i	1973	51,900.0	i	51,900.0	51,900.0	i	1.0E-99	1.0E99	Syst	i
i	1972	42,100.0	i	42,100.0	42,100.0	i	1.0E-99	1.0E99	Syst	
i	1971	12,100.0	i	12,100.0	12,100.0	i	1.0E-99	1.0E99	Syst	
	1970	15,200.0	i I	15,200.0	15,200.0	1	1.0E-99	1.0E99	Syst Syst	
	1969	18,600.0	1	18,600.0	18,600.0	ı	1.0E-99	1.0E99	Syst	ı

Fitted log10 Moments Std Dev Skew		Mean	Variance
EMA at-site data w/o	regional info	4.447842	
0.067418 0.259649	0.349190		
EMA w/ regional info	and B17b MSE(G)	4.447842	
0.067418 0.259649	0.264946		
EMA w/ regional info	and specified MSE(G)	4.447842	
0.067418 0.259649	0.264946		

MSE[G at-site systematic]

EMA Estimate of MSE[G at-site]

0.112105 0.112105

--- Final Results ---

<< Plotting Positions >> AmDarling2019-Magnolia, LA-FLOW-ANNUAL PEAK

	Ever	nts Ana	_			red Events	
Dav	Mon	Year	FLOW CFS	 Rank	Water Year	FLOW CFS	H-S Plot Pos
	_	1949	23,800.0	1	2016	202,000.0	1.69
		1950	35,100.0	2	1977	85,100.0	3.39
	_	1951	31,500.0	3	1983	75 , 700.0	5.08
	_	1952	10,300.0	4	1993	59,600.0	6.78
	_	1953	48,400.0	5	1994	54,700.0	8.47
		1953	10,800.0	1 6	1955	53,700.0	10.17
		1955	53,700.0	1 7	1973	51,900.0	11.86
		1956	22,800.0	8	2001	51,300.0	13.56
		1957	12,500.0	9	1953	48,400.0	15.25
25	Sep	1958	13,800.0	10	2008	44,600.0	16.95
04	Feb	1959	15,800.0	11	1995	44,100.0	18.64
19	Dec	1959	17,900.0	12	2003	44,000.0	20.34
		1961	42,900.0	13	1997	44,000.0	22.03
29	Apr	1962	35,300.0	14	1980	43,400.0	23.73
30	Nov	1962	12,100.0	15	1961	42,900.0	25.42
03	Mar	1964	29,300.0	16	1979	42,600.0	27.12
06	Oct	1964	39,200.0	17	1972	42,100.0	28.81
17	Feb	1966	30,000.0	18	1967	40,400.0	30.51
15	Apr	1967	40,400.0	19	1965	39,200.0	32.20
30	Nov	1967	12,100.0	20	1998	36,200.0	33.90
13	Apr	1969	18,600.0	21	1962	35,300.0	35.59
08	Oct	1969	15,200.0	22	1950	35,100.0	37.29
30	Nov	1970	12,100.0	23	2009	33,500.0	38.98
06	Dec	1971	42,100.0	24	1996	32,200.0	40.68
27	Mar	1973	51,900.0	25	1999	31,700.0	42.37
15	Apr	1974	22,200.0	26	1951	31,500.0	44.07
	_	1975	30,100.0	27	1975	30,100.0	45.76
30	Nov	1975	14,000.0	28	1966	30,000.0	47.46
23	Apr	1977	85,100.0	29	1964	29,300.0	49.15
		1977	25,800.0	30	2013	28,900.0	50.85
23	Apr	1979	42,600.0	31	2004	27,900.0	52.54
	_	1980	43,400.0	32	2014	26,100.0	54.24
		1980	14,300.0	33	1978	25,800.0	55.93
		1981	17,700.0	34	2012	24,800.0	57.63
		1983	75,700.0	35	2011	24,100.0	59.32
	_	1984		36	1949	23,800.0	61.02
		1985		37	1956	22,800.0	62.71
		1986		38	1974	22,200.0	64.41

	01	Jan	1987		39	2015	22,000.0	66.10	
	01	Jan	1988		40	2010	21,800.0	67.80	
	01	Jan	1989		41	2005	21,400.0	69.49	
	01	Jan	1990		42	2017	21,360.0	71.19	
	01	Jan	1991		43	2002	20,500.0	72.88	
	01	Jan	1992		44	1969	18,600.0	74.58	
	21	Jan	1993	59,600.0	45	1960	17,900.0	76.27	
	29	Jan	1994	54,700.0	46	1982	17,700.0	77.97	
	12	Apr	1995	44,100.0	47	1959	15,800.0	79.66	
	19	Dec	1995	32,200.0	48	1970	15,200.0	81.36	
	29	Apr	1997	44,000.0	49	1981	14,300.0	83.05	
	09	Jan	1998	36,200.0	50	1976	14,000.0	84.75	
	15	Mar	1999	31,700.0	51	1958	13,800.0	86.44	
	0.5	Apr	2000		52	1957	12,500.0	88.14	
	09	Jun	2001	51,300.0	53	1971	12,100.0	89.83	
	10	Apr	2002	20,500.0	54	1968	12,100.0	91.53	
	04	Feb	2003	44,000.0	55	1963	12,100.0	93.22	
	17	May	2004	27,900.0	56	1954	10,800.0	94.92	
	02	Feb	2005	21,400.0	57	1952	10,300.0	96.61	
	03	Feb	2006	7,380.0	58	2006	7,380.0	98.31	
	01	Jan	2007		59	2000	*		
	0 4	Sep	2008	44,600.0	60	2007	*		
	30	Mar	2009	33,500.0	61	1992	*		
			2009	21,800.0	62	1991	*		
			2011	24,100.0	63	1990	*		
		_	2012	24,800.0	64	1989	*		
			2013	28,900.0	65	1988	*		
			2014	26,100.0	66	1987	*		
			2015	22,000.0	67	1986	*		
		_	2016	202,000.0	68	1985	*		
	04	Apr	2017	21,360.0	69	1984	*		
									-

^{*} Low outlier plotting positions are computed using Median parameters.

<< Frequency Curve >>
AmDarling2019-Magnolia, LA-FLOW-ANNUAL PEAK

	Computed Curve FLOW,	Variance Log(EMA) CFS		Percent Chance Exceedance		Confidence 0.10 FLOW,	0.90
-	190,091.2 151,714.9 126,449.2 104,044.8 84,175.4 61,247.6	0.01767 0.01243 0.00919 0.00656 0.00452 0.00265	 	0.200 0.500 1.000 2.000 4.000 10.000	- 	325,531.6 236,478.7 184,007.7 141,767.3 107,855.3 73,145.1	139,159.3 116,385.7 100,337.7 85,233.4 71,000.3 53,376.9
 	45,957.9 27,314.2 16,851.9	0.00181 0.00130 0.00135	i	20.000 50.000 80.000	 	52,747.0 30,452.3 18,749.3	40,791.9 24,550.3 15,036.0

1	13,283.7 10,994.8	0.00170 0.00234	90.000 95.000		14,894.8 12,504.7	11,601.8 9,312.1	
	7,848.2	0.00506		İ	9,412.8	6,099.6	

<< Systematic Statistics >> AmDarling2019-Magnolia, LA-FLOW-ANNUAL PEAK

_____ Log Transform: | Number of Events |-----|

|----|

--- End of Analytical Frequency Curve ---

USGS 07378500 Amite River near Denham Springs, LA

Regional Skew: 0.032 Regional Skew MSE: 0.302

Plotting Position Type: Hirsch-Stedinger

Upper Confidence Level: 0.1 Lower Confidence Level: 0.9

Use non-standard frequencies

Frequency: 0.2 Frequency: 0.5 Frequency: 1.0 Frequency: 2.0 Frequency: 4.0 Frequency: 10.0 Frequency: 20.0 Frequency: 50.0 Frequency: 80.0 Frequency: 90.0 Frequency: 95.0 Frequency: 99.0

Display ordinate values using 1 digits in fraction part of value

--- End of Input Data ---

A3-14

<< EMA Representation of Data >> AmDarling2019-Denham Springs, LA-FLOW-ANNUAL PEAK

		Value		Thresho	 old	
Year	Peak	Low	High	Low	High	Type
1921	93,000.0	93,000.0	93,000.0	1.0E-99	1.0E99	 Hist
1922		1.0E-99	93,000.0	93,000.0	1.0E99	Cens
1923		1.0E-99	93,000.0	93,000.0	1.0E99	Cens
1924		1.0E-99	93,000.0	93,000.0	1.0E99	Cens
1925		1.0E-99	93,000.0	93,000.0	1.0E99	Cens
1926		1.0E-99	93,000.0	93,000.0	1.0E99	Cens
1927		1.0E-99	93,000.0	93,000.0	1.0E99	Cens
1928		1.0E-99	93,000.0	93,000.0	1.0E99	Cens
1929		1.0E-99	93,000.0	93,000.0	1.0E99	Cens
1930		1.0E-99	93,000.0	93,000.0	1.0E99	Cens
1931		1.0E-99	93,000.0	93,000.0	1.0E99	Cens
1932		1.0E-99	93,000.0	93,000.0	1.0E99	Cens
1933		1.0E-99	93,000.0		1.0E99	Cens
1934		1.0E-99	93,000.0	93,000.0	1.0E99	Cens
1935		1.0E-99	93,000.0	93,000.0	1.0E99	Cens
1936		1.0E-99	93,000.0	93,000.0	1.0E99	Cens
1937		1.0E-99	93,000.0		1.0E99	Cens
1938		1.0E-99	93,000.0	93,000.0	1.0E99	Cens
1939	12,100.0	12,100.0	12,100.0	1.0E-99	1.0E99	Syst
1940	16,000.0	16,000.0	16,000.0	1.0E-99	1.0E99	Syst
1941	20,800.0	20,800.0	20,800.0	1.0E-99	1.0E99	Syst
1942	12,200.0	12,200.0	12,200.0	1.0E-99	1.0E99	Syst
1943	40,200.0	40,200.0	40,200.0	1.0E-99	1.0E99	Syst
1944	11,000.0	11,000.0	11,000.0	1.0E-99	1.0E99	Syst
1945	11,600.0	11,600.0	11,600.0	1.0E-99	1.0E99	Syst
1946	15,500.0	15,500.0	15,500.0	1.0E-99	1.0E99	Syst
1947	27,800.0	27,800.0	27,800.0	1.0E-99	1.0E99	Syst
1948 1949	45,100.0	45,100.0	45,100.0	1.0E-99	1.0E99	Syst
1949	28,800.0 40,800.0	28,800.0	28,800.0 40,800.0	1.0E-99 1.0E-99	1.0E99	Syst
1951	36,900.0	36,900.0	36,900.0	1.0E-99	1.0E99 1.0E99	Syst Syst
1 1951	8,230.0	8,230.0	8,230.0	1.0E-99	1.0E99	Syst Syst
1 1953	67,000.0	67,000.0	67,000.0	1.0E-99	1.0E99	Syst Syst
1 1954	15,200.0	15,200.0	15,200.0	1.0E-99	1.0E99	Syst Syst
1955	54,300.0	54,300.0	54,300.0	1.0E-99	1.0E99	Syst
1 1956	23,400.0	23,400.0	23,400.0	1.0E-99	1.0E99	Syst
1957	12,300.0	12,300.0	12,300.0	1.0E-99	1.0E99	Syst
1958	14,700.0	14,700.0	14,700.0	1.0E-99	1.0E99	Syst
1959	19,100.0	19,100.0	19,100.0	1.0E-99	1.0E99	Syst
1960	18,800.0	18,800.0	18,800.0	1.0E-99	1.0E99	Syst
1961	49,100.0	49,100.0	49,100.0		1.0E99	
1962	49,700.0	49,700.0	49,700.0		1.0E99	
1963	5,150.0	5,150.0	5,150.0		1.0E99	
1964	40,500.0	40,500.0	40,500.0	1.0E-99	1.0E99	
1965	49,900.0	49,900.0	49,900.0		1.0E99	-
1966	39,700.0	39,700.0	39,700.0	1.0E-99	1.0E99	Syst
1967	47,800.0	47,800.0	47,800.0	1.0E-99	1.0E99	Syst
1968	6,290.0	6,290.0	6,290.0	1.0E-99		Syst
1969	23,000.0	23,000.0	23,000.0	1.0E-99	1.0E99	Syst
1970	21,700.0	21,700.0	21,700.0	1.0E-99	1.0E99	Syst
1971	12,600.0	12,600.0	12,600.0	1.0E-99	1.0E99	Syst
1972	51,800.0	51,800.0	51,800.0	•		Syst
1973	61,800.0	61,800.0	61,800.0	1.0E-99	1.0E99	Syst

1974	21,300.0	21,300.0	21,300.0	1.0E-99	1.0E99	Syst	
1975	29,900.0	29,900.0	29,900.0	1.0E-99	1.0E99	Syst	
1976	16,100.0	16,100.0	16,100.0	1.0E-99	1.0E99	Syst	
1977	110,000.0	110,000.0	110,000.0	1.0E-99	1.0E99	Syst	
1978	31,300.0	31,300.0	31,300.0	1.0E-99	1.0E99	Syst	
1979	68,600.0	68,600.0	68,600.0	1.0E-99	1.0E99	Syst	
1980	64,200.0	64,200.0	64,200.0	1.0E-99	1.0E99	Syst	
1981	11,300.0	11,300.0	11,300.0	1.0E-99	1.0E99	Syst	
1982	23,900.0	23,900.0	23,900.0	1.0E-99	1.0E99	Syst	
1983	112,000.0	112,000.0	112,000.0	1.0E-99	1.0E99	Syst	
1984	23,600.0	23,600.0	23,600.0	1.0E-99	1.0E99	Syst	
1985	26,400.0	26,400.0	26,400.0	1.0E-99	1.0E99	Syst	
1986	43,900.0	43,900.0	43,900.0	1.0E-99	1.0E99	Syst	
1987	31,300.0	31,300.0	31,300.0	1.0E-99	1.0E99	Syst	
1988	41,300.0	41,300.0	41,300.0	1.0E-99	1.0E99	Syst	
1989	29,400.0	29,400.0	29,400.0	1.0E-99	1.0E99	Syst	
1990	96,700.0	96,700.0	96,700.0	1.0E-99	1.0E99	Syst	
1991	37,700.0	37,700.0	37,700.0	1.0E-99	1.0E99	Syst	
1992	48,600.0	48,600.0	48,600.0	1.0E-99	1.0E99	Syst	
1993	81,900.0	81,900.0	81,900.0	1.0E-99	1.0E99	Syst	
1994	66,500.0	66,500.0	66,500.0	1.0E-99	1.0E99	Syst	
1995	65,300.0	65,300.0	65,300.0	1.0E-99	1.0E99	Syst	
1996	49,000.0	49,000.0	49,000.0	1.0E-99	1.0E99	Syst	
1997	59,300.0	59,300.0	59,300.0	1.0E-99	1.0E99	Syst	
1998	50,200.0	50,200.0	50,200.0		1.0E99	Syst	
1999	38,900.0	38,900.0	38,900.0	1.0E-99	1.0E99	Syst	
2000	7,730.0	7,730.0	7,730.0		1.0E99	Syst	
2001	83,500.0	83,500.0	83,500.0	1.0E-99	1.0E99	Syst	
2002	23,300.0	23,300.0	23,300.0	1.0E-99	1.0E99	Syst	
2003	54,000.0	54,000.0	54,000.0	1.0E-99	1.0E99	Syst	:
2004	41,100.0	41,100.0	41,100.0	1.0E-99	1.0E99	Syst	:
2005	27,400.0	27,400.0	27,400.0	1.0E-99	1.0E99	Syst	
2006	5,260.0	5,260.0	5,260.0		1.0E99	Syst	
2007	37,300.0	37,300.0	37,300.0		1.0E99	Syst	
2008	67,400.0	67,400.0	67,400.0	1.0E-99	1.0E99	Syst	
2009	43,100.0	43,100.0	43,100.0	1.0E-99	1.0E99	Syst	:
2010	27,200.0	27,200.0	27,200.0	1.0E-99	1.0E99	Syst	:
2011	31,600.0	31,600.0	31,600.0	1.0E-99	1.0E99	Syst	:
2012	35,500.0	35,500.0	35,500.0	1.0E-99	1.0E99	Syst	
2013	37,800.0 29,300.0	37,800.0 29,300.0	37,800.0 29,300.0	1.0E-99 1.0E-99	1.0E99 1.0E99	Syst Syst	:
2014	27,900.0	29,300.0	27,900.0	1.0E-99	1.0E99		:
2013	266,000.0	266,000.0	266,000.0	1.0E-99	1.0E99	Syst Syst	I I
2010	26,500.0	26,500.0	26,500.0	1.0E-99	1.0E99	Syst Syst	i I
2017		20,300.0	20,300.0	1.0E 99 	エ・UED99		i i

Fitted log10 Moments Std Dev Skew		Mean	Variance
EMA at-site data w/o 0.099412 0.315296	3	4.488804	
EMA w/ regional info 0.099205 0.314969	and B17b MSE(G)	4.488490	
	and specified MSE(G)	4.488463	

EMA Estimate of MSE[G at-site]	0.074645
MSE[G at-site systematic]	0.080339
Effective Record Length [G at-site]	85.026078
Grubbs-Beck Critical Value	0.00000

--- Final Results ---

<< Plotting Positions >> AmDarling2019-Denham Springs, LA-FLOW-ANNUAL PEAK

Event	s Analyzed		Ordered Events					
	FLOW		Water	FLOW	H-S			
Day Mon Y	ear CFS	Rank	Year	CFS	Plot Pos			
	001 00 000 0		0016					
15 Mar 1	•	1	2016	266,000.0	0.86			
01 Jan 1		2	1983	112,000.0	1.72			
01 Jan 1		3	1977	110,000.0	2.58			
01 Jan 1		4	1990	96,700.0	3.44			
01 Jan 1		5	1921	93,000.0	4.30			
01 Jan 1		6	2001	83,500.0	6.40			
01 Jan 1		7	1993	81,900.0	7.65			
01 Jan 1		8	1979	68,600.0	8.90			
01 Jan 1		9	2008	67,400.0	10.15			
01 Jan 1		10	1953	67 , 000.0	11.39			
01 Jan 1		11	1994	66,500.0	12.64			
01 Jan 1		12	1995	65,300.0	13.89			
01 Jan 1		13	1980	64,200.0	15.14			
01 Jan 1	934	14	1973	61,800.0	16.39			
01 Jan 1		15	1997	59,300.0	17.63			
01 Jan 1	936	16	1955	54,300.0	18.88			
01 Jan 1	937	17	2003	54,000.0	20.13			
01 Jan 1	938	18	1972	51,800.0	21.38			
06 Jun 1	939 12,100.0	19	1998	50,200.0	22.63			
07 Jul 1	940 16,000.0	20	1965	49,900.0	23.87			
17 Dec 1	940 20,800.0	21	1962	49,700.0	25.12			
19 Sep 1	942 12,200.0	22	1961	49,100.0	26.37			
23 Mar 1	943 40,200.0	23	1996	49,000.0	27.62			
23 Mar 1	944 11,000.0	24	1992	48,600.0	28.87			
10 Jan 1	945 11,600.0	25	1967	47,800.0	30.11			
07 Jul 1	946 15,500.0	26	1948	45,100.0	31.36			
14 Mar 1	947 27,800.0	27	1986	43,900.0	32.61			
05 Mar 1	948 45,100.0	28	2009	43,100.0	33.86			
24 Mar 1	949 28,800.0	29	1988	41,300.0	35.11			
09 Jan 1	950 40,800.0	30	2004	41,100.0	36.35			
01 Apr 1		31	1950	40,800.0	37.60			
06 Apr 1		32	1964	40,500.0	38.85			

1 2	0 May	1953	67,000.0	1	33	1943	40,200) ()	40.10	1
				1						
	.1 Dec		15,200.0	!	34	1966	39,700		41.35	!
	.5 Apr		54,300.0		35	1999	38,900		42.59	
1	.4 Mar	1956	23,400.0		36	2013	37,800	0.0	43.84	
1 0	1 Jul	1957	12,300.0		37	1991	37,700	0.0	45.09	1
	.7 Nov		14,700.0	i	38	2007	37,300		46.34	i
			•	1	39		-			
	4 Feb		19,100.0	!		1951	36,900		47.59	!
	.9 Dec		18,800.0		40	2012	35,500		48.83	- 1
2	0 Mar	1961	49,100.0		41	2011	31,600		50.08	
2	9 Apr	1962	49,700.0		42	1987	31,300	0.0	51.33	
	2 Jan		5,150.0	1	43	1978	31,300		52.58	1
	4 Mar		40,500.0	i	44	1975	29,900		53.83	i
				1						
	7 Oct		49,900.0	!	45	1989	29,400		55.07	!
1	.3 Feb		39,700.0		46	2014	29,300		56.32	- 1
1	.7 Apr	1967	47,800.0		47	1949	28,800	0.0	57.57	
1	.3 May	1968	6,290.0	1	48	2015	27,900	0.0	58.82	1
	.4 Apr		23,000.0	i	49	1947	27,800) . ()	60.07	i
	18 Oct		21,700.0	i	50	2005	27,400		61.31	i
			•	1			•			!
	0 Sep		12,600.0	!	51	2010	27,200		62.56	
•	18 Dec		51,800.0		52	2017	26,500		63.81	
2	27 Mar	1973	61,800.0		53	1985	26,400	0.0	65.06	
2	7 Dec	1973	21,300.0	1	54	1982	23,900	0.0	66.30	1
i 1	.0 May	1975	29,900.0	i	55	1984	23,600		67.55	i
	27 Mar		16,100.0	i	56	1956	23,400		68.80	i
				1						
	3 Apr		110,000.0	!	57	2002	23,300		70.05	!
	2 Dec		31,300.0		58	1969	23,000		71.30	- 1
2	4 Apr	1979	68,600.0		59	1970	21,700	0.0	72.54	
3	0 Mar	1980	64,200.0		60	1974	21,300	0.0	73.79	
1 1	.2 Dec	1980	11,300.0	1	61	1941	20,800	0.0	75.04	1
	.8 Feb		23,900.0	i	62	1959	19,100		76.29	i
	8 Apr		112,000.0	i	63	1960	18,800		77.54	
				1						!
•	.2 Dec		23,600.0		64	1976	16,100		78.78	- 1
	4 Oct		26,400.0		65	1940	16,000		80.03	
3	31 Oct	1985	43,900.0		66	1946	15,500	0.0	81.28	
2	0 Jan	1987	31,300.0	1	67	1954	15,200	0.0	82.53	1
i o	4 Apr	1988	41,300.0	i	68	1958	14,700		83.78	i
	1 May		29,400.0	i	69	1971	12,600		85.02	i
				1						
	7 Jan		96,700.0	!	70	1957	12,300		86.27	!
	22 Feb		37,700.0		71	1942	12,200		87.52	
	7 Mar		48,600.0		72	1939	12,100		88.77	
2	22 Jan	1993	81,900.0		73	1945	11,600	0.0	90.02	
3	0 Jan	1994	66,500.0		74	1981	11,300	0.0	91.26	
	2 Apr		65,300.0	i	75	1944	11,000		92.51	i
	20 Dec		49,000.0	l	76	1952	8,230		93.76	
				I						I I
	9 Apr		59,300.0	1	77	2000	7,730		95.01	
	9 Jan		50,200.0		78	1968	6,290		96.26	
1	.5 Mar	1999	38,900.0		79	2006	5,260	0.0	97.50	
0	6 May	2000	7,730.0		80	1963	5,150	0.0	98.75	1
	9 Jun		83,500.0	1	81	1938		*		i
	.0 Apr		23,300.0	İ	82	1937	_	*		i
	_			I				*		I I
	4 Feb		54,000.0	1	83	1936				
1	.7 May	∠∪∪4	41,100.0		84	1935	_	*		

	02	Feb	2005	27,400.0		85	1934	*	
	30	Apr	2006	5,260.0		86	1933	*	
	29	Oct	2006	37,300.0		87	1932	*	
	05	Sep	2008	67,400.0		88	1931	*	
	30	Mar	2009	43,100.0		89	1930	*	
	19	Dec	2009	27,200.0		90	1929	*	
	10	Mar	2011	31,600.0		91	1928	*	
	20	Feb	2012	35,500.0		92	1927	*	
	11	Jan	2013	37,800.0		93	1926	*	
	23	Feb	2014	29,300.0		94	1925	*	
	04	Mar	2015	27,900.0		95	1924	*	
	14	Aug	2016	266,000.0		96	1923	*	
	22	Jan	2017	26,500.0		97	1922	*	
-					- -				 ٠

^{*} Low outlier plotting positions are computed using Median parameters.

<< Frequency Curve >> AmDarling2019-Denham Springs, LA-FLOW-ANNUAL PEAK

	Computed Curve FLOW,	Variance Log(EMA) CFS		Percent Chance Exceedance		Confidence Limits 0.10 0.90 FLOW, CFS
	210,449.8 175,336.3 150,376.4 126,759.5 104,435.8 76,768.0 57,016.0 31,503.7 16,853.9 11,995.7	0.01008 0.00703 0.00518 0.00371 0.00261 0.00170 0.00138 0.00136 0.00185 0.00268		0.200 0.500 1.000 2.000 4.000 10.000 20.000 50.000 80.000 90.000		298,903.3
	8,997.0 5,157.4	0.00402 0.00933	 -	95.000 99.000 	 - -	10,633.1 7,216.1 6,562.4 3,603.5

<< Systematic Statistics >> AmDarling2019-Denham Springs, LA-FLOW-ANNUAL PEAK

 -	Log Transfo	rm:	 - -	Number of Even		 -	
	Mean Standard Dev Station Skew	4.488 0.315 -0.251		Historic Events High Outliers Low Outliers	0	1	
 	Regional Skew Weighted Skew Adopted Skew	0.032 -0.189 -0.189		Zero Events Missing Events Systematic Events	0 17	79	


```
| | Historic Period 97 |
|-----|
```

--- End of Analytical Frequency Curve ---

USGS 07380120 Amite River at Port Vincent, LA

Regional Skew: 0.047
Regional Skew MSE: 0.302

Plotting Position Type: Hirsch-Stedinger

Upper Confidence Level: 0.05 Lower Confidence Level: 0.95

Use non-standard frequencies

Frequency: 0.2
Frequency: 0.5
Frequency: 1.0
Frequency: 2.0
Frequency: 4.0
Frequency: 20.0
Frequency: 50.0
Frequency: 50.0
Frequency: 90.0
Frequency: 90.0
Frequency: 95.0
Frequency: 95.0
Frequency: 99.0

Display ordinate values using 1 digits in fraction part of value

--- End of Input Data ---

<< EMA Representation of Data >> Amite Pt Vincent-Port Vincent, LA-FLOW-ANNUAL PEAK

			Value		Thresho	Ι Ι	
Year	Peak	1	Low	High	Low	High	Type
1985	30,000.0		30,000.0	30,000.0	1.0E-99	1.0E99	Syst
1986	42,200.0		42,200.0	42,200.0	1.0E-99	1.0E99	Syst
1987	30,000.0		30,000.0	30,000.0	1.0E-99	1.0E99	Syst
1988	38,300.0		38,300.0	38,300.0	1.0E-99	1.0E99	Syst
1989	28,400.0		28,400.0	28,400.0	1.0E-99	1.0E99	Syst
1990	69,500.0		69,500.0	69,500.0	1.0E-99	1.0E99	Syst
1991	22,900.0		22,900.0	22,900.0	1.0E-99	1.0E99	Syst
1992	43,100.0		43,100.0	43,100.0	1.0E-99	1.0E99	Syst
1993	48,400.0		48,400.0	48,400.0	1.0E-99	1.0E99	Syst
1994	27,900.0		27,900.0	27,900.0	1.0E-99	1.0E99	Syst
1995	44,700.0	1	44,700.0	44,700.0	1.0E-99	1.0E99	Syst
1996	8,620.0	1	8,620.0	8,620.0	1.0E-99	1.0E99	Syst

٠

1	1999 2000	33,900.0 12,600.0	1	33,900.0 12,600.0	33,900.0 12,600.0	1	1.0E-99 1.0E-99	1.0E99 1.0E99	Syst Syst	
i	2001	12,600.0	i	12,600.0	12,600.0	i	1.0E-99	1.0E99	Syst	
	2002	12,300.0		12,300.0	12,300.0		1.0E-99	1.0E99	Syst	
	2003	42,100.0		42,100.0	42,100.0		1.0E-99	1.0E99	Syst	
	2004	31,400.0		31,400.0	31,400.0		1.0E-99	1.0E99	Syst	
	2005	20,500.0		20,500.0	20,500.0		1.0E-99	1.0E99	Syst	
	2006	11,700.0		11,700.0	11,700.0		1.0E-99	1.0E99	Syst	
	2007	22,800.0		22,800.0	22,800.0		1.0E-99	1.0E99	Syst	
	2008	22,800.0		22,800.0	22,800.0		1.0E-99	1.0E99	Syst	
	2009	29,000.0		29,000.0	29,000.0		1.0E-99	1.0E99	Syst	
	2010	20,800.0		20,800.0	20,800.0		1.0E-99	1.0E99	Syst	
	2011	20,300.0		20,300.0	20,300.0		1.0E-99	1.0E99	Syst	
	2012	24,100.0		24,100.0	24,100.0		1.0E-99	1.0E99	Syst	
	2013	35,200.0		35,200.0	35,200.0		1.0E-99	1.0E99	Syst	
	2014	20,300.0		20,300.0	20,300.0		1.0E-99	1.0E99	Syst	
-	2015	17,100.0		17,100.0	17,100.0		1.0E-99	1.0E99	Syst	
-	2016	199,000.0		199,000.0	199,000.0		1.0E-99	1.0E99	Syst	
	2017	20,400.0	. [20,400.0	20,400.0	 -	1.0E-99	1.0E99	Syst 	.
			- 1							- 1

Fitted log10 Moments	Mean Varian	ıce
Std Dev Skew		
EMA at-site data w/o regional info	4.443663	
0.066496 0.257869 0.808860		
EMA w/ regional info and B17b MSE(G)	4.443663	
0.066496 0.257869 0.481797		
EMA w/ regional info and specified MSE(G)	4.443663	
0.066496 0.257869 0.481797		

EMA Estimate of MSE[G at-site] 0.227170

MSE[G at-site systematic] 0.227170

Effective Record Length [G at-site] 33.000000

Grubbs-Beck Critical Value 0.000000

--- Final Results ---

<< Plotting Positions >>

Amite Pt Vincent-Port Vincent, LA-FLOW-ANNUAL PEAK

	Events Analyzed				Ordered	d Events		
		FLOW			Water	FLOW	H-S	
	Day Mon Year	CFS		Rank	Year	CFS	Plot Pos	
			- -					-

28 F	eb 1985	30,000.0	1	2016	199,000.0	2.94	
01 No	ov 1985	42,200.0	2	1990	69,500.0	5.88	
20 Ja	an 1987	30,000.0	3	1993	48,400.0	8.82	
04 A ₁	or 1988	38,300.0	4	1997	45,300.0	11.76	
22 Ma	ay 1989	28,400.0	5	1995	44,700.0	14.71	
28 Ja	an 1990	69,500.0	6	1992	43,100.0	17.65	
24 F	eb 1991	22,900.0	7	1986	42,200.0	20.59	
08 Ma	ar 1992	43,100.0	8	2003	42,100.0	23.53	
23 Ja	an 1993	48,400.0	9	1998	41,000.0	26.47	
01 F	eb 1994	27,900.0	10	1988	38,300.0	29.41	
13 A ₁	or 1995	44,700.0	11	2013	35,200.0	32.35	
15 A ₁	or 1996	8,620.0	12	1999	33,900.0	35.29	
30 A ₁	or 1997	45,300.0	13	2004	31,400.0	38.24	
09 Ja	an 1998	41,000.0	14	1987	30,000.0	41.18	
17 Ma	ar 1999	33,900.0	15	1985	30,000.0	44.12	
06 Ma	ay 2000	12,600.0	16	2009	29,000.0	47.06	
19 No	ov 2000	12,600.0	17	1989	28,400.0	50.00	
30 S	ep 2002	12,300.0	18	1994	27,900.0	52.94	
24 F	eb 2003	42,100.0	19	2012	24,100.0	55.88	
18 Ma	ay 2004	31,400.0	20	1991	22,900.0	58.82	
04 F	eb 2005	20,500.0	21	2008	22,800.0	61.76	
30 A ₁	or 2006	11,700.0	22	2007	22,800.0	64.71	
30 00	ct 2006	22,800.0	23	2010	20,800.0	67.65	
04 Se	ep 2008	22,800.0	24	2005	20,500.0	70.59	
31 Ma	ar 2009	29,000.0	25	2017	20,400.0	73.53	
20 De	ec 2009	20,800.0	26	2014	20,300.0	76.47	
12 Ma	ar 2011	20,300.0	27	2011	20,300.0	79.41	
21 F	eb 2012	24,100.0	28	2015	17,100.0	82.35	
	an 2013	35,200.0	29	2001	12,600.0	85.29	
24 F	eb 2014	20,300.0	30	2000	12,600.0	88.24	
05 Ma	ar 2015	17,100.0	31	2002	12,300.0	91.18	
15 A	ug 2016	199,000.0	32	2006	11,700.0	94.12	
24 Ja	an 2017	20,400.0	33	1996	8,620.0	97.06	

^{*} Low outlier plotting positions are computed using Median parameters.

<< Frequency Curve >> Amite Pt Vincent-Port Vincent, LA-FLOW-ANNUAL PEAK

	Computed Curve FLOW,	Variance Log(EMA) CFS	 E	Percent Chance xceedance	 -	Confidence Limits 0.05 0.95 FLOW, CFS
-						
	217,391.0	0.03454		0.200		734,936.7 131,022.4
	167,317.2	0.02444		0.500		450,916.3 108,317.7
	135,813.6	0.01817	l	1.000		310,646.3 92,595.1
	108,956.3	0.01305		2.000		213,346.9 78,023.3
1	86,073.4	0.00903	l	4.000	I	145,992.6 64,509.0
İ	60,892.9	0.00527	l	10.000	ĺ	87,729.6 48,095.9
İ	44,925.1	0.00349		20.000	į	58,878.5 36,616.3

	26,486.8 16,704.9 13,468.8 11,419.1 8,631.8	0.00222 0.00203 0.00242 0.00322 0.00672	50.000 80.000 90.000 95.000 99.000		32,072.8 19,835.2 16,019.5 13,764.0 11,151.9	22,190.2 13,885.3 10,768.6 8,665.4 5,732.6
--	---	---	--	--	--	--

<< Systematic Statistics >>

Amite Pt Vincent-Port Vincent, LA-FLOW-ANNUAL PEAK

44 58	İ	Historic Events		0
E O				_
28		High Outliers	0	
09		Low Outliers	0	
47		Zero Events	0	
82	1	Missing Events	0	
82		Systematic Events		33
	82	82	82 Missing Events	82 Missing Events 0

--- End of Analytical Frequency Curve ---

USGS 07377500 Comite River near Olive Branch, LA

Regional Skew: 0.187
Regional Skew MSE: 0.302

Plotting Position Type: Hirsch-Stedinger

Upper Confidence Level: 0.1 Lower Confidence Level: 0.9

Use non-standard frequencies

Frequency: 0.2
Frequency: 0.5
Frequency: 1.0
Frequency: 2.0
Frequency: 4.0
Frequency: 10.0
Frequency: 20.0
Frequency: 50.0
Frequency: 50.0
Frequency: 90.0
Frequency: 90.0
Frequency: 95.0
Frequency: 99.0

Display ordinate values using 1 digits in fraction part of value

<< EMA Representation of Data >> AmDarling2019-Olive Branch, LA-FLOW-ANNUAL PEAK

		 Value		Thresh	 old	
Year	Peak	Low	High	Low	High	Type
	12,400.0	12,400.0	12,400.0	 1.0E-99	1.0E99	 Syst
1944	3,110.0	3,110.0	3,110.0	1.0E-99	1.0E99	Syst
1945	3,460.0	3,460.0	3,460.0	1.0E-99	1.0E99	Syst
1946	2,870.0	2,870.0	2,870.0	1.0E-99	1.0E99	Syst
1947	5,240.0	5,240.0	5,240.0	1.0E-99	1.0E99	Syst
1948	9,900.0	9,900.0	9,900.0	1.0E-99	1.0E99	Syst
1949	11,300.0	11,300.0	11,300.0	1.0E-99	1.0E99	Syst
1950	11,300.0	11,300.0	11,300.0	1.0E-99	1.0E99	Syst
1951	9,900.0	9,900.0	9,900.0	1.0E-99	1.0E99	Syst
1952	1,530.0	1,530.0	1,530.0	1.0E-99	1.0E99	Syst
1953	13,300.0	13,300.0	13,300.0	1.0E-99	1.0E99	Syst
1954	1,780.0	1,780.0	1,780.0	1.0E-99	1.0E99	Syst
1955	14,400.0	14,400.0	14,400.0	1.0E-99	1.0E99	Syst
1956	8,140.0	8,140.0	8,140.0	1.0E-99	1.0E99	Syst
1957	4,270.0	4,270.0	4,270.0	1.0E-99	1.0E99	Syst
1958	3,510.0	3,510.0	3,510.0	1.0E-99	1.0E99	Syst
1959	3,100.0	3,100.0	3,100.0	1.0E-99	1.0E99	Syst
1960	4,450.0	4,450.0	4,450.0	1.0E-99	1.0E99	Syst
1961	19,900.0	19,900.0	19,900.0	1.0E-99	1.0E99	Syst
1962	11,400.0	11,400.0	11,400.0	1.0E-99	1.0E99	Syst
1963	1,660.0	1,660.0	1,660.0	1.0E-99	1.0E99	Syst
1964	11,400.0	11,400.0	11,400.0	1.0E-99	1.0E99	Syst
1965	15 , 500.0	15,500.0	15,500.0	1.0E-99	1.0E99	Syst
1966	6,580.0	6,580.0	6,580.0	1.0E-99	1.0E99	Syst
1967	13,400.0	13,400.0	13,400.0	1.0E-99	1.0E99	Syst
1968	1,380.0	1,380.0	1,380.0	1.0E-99	1.0E99	Syst
1969	3,500.0	3,500.0	3,500.0	1.0E-99	1.0E99	Syst
1970	2,960.0	2,960.0	2,960.0	1.0E-99	1.0E99	Syst
1971	3,430.0	3,430.0	3,430.0	1.0E-99	1.0E99	Syst
1972 1973	16,400.0	16,400.0	16,400.0	1.0E-99	1.0E99	Syst
1973	12,500.0 4,660.0	12,500.0 4,660.0	12,500.0 4,660.0	1.0E-99 1.0E-99	1.0E99 1.0E99	Syst Syst
1 1975	7,230.0	7,230.0	7,230.0	1.0E-99	1.0E99	Syst Syst
1976	2,720.0	2,720.0	2,720.0	1.0E-99	1.0E99	Syst Syst
1 1977	22,400.0	22,400.0	22,400.0	1.0E-99	1.0E99	Syst
1978	14,500.0	14,500.0	14,500.0	1.0E-99	1.0E99	Syst
1979	21,300.0	21,300.0	21,300.0	1.0E-99	1.0E99	Syst
1 1980	16,900.0	16,900.0	16,900.0	1.0E-99	1.0E99	Syst
1981	2,560.0	2,560.0	2,560.0	1.0E-99	1.0E99	Syst
1982	4,660.0	4,660.0	4,660.0	1.0E-99	1.0E99	Syst
1983	19,800.0	19,800.0	19,800.0	1.0E-99	1.0E99	Syst
1984	4,210.0	4,210.0	4,210.0		1.0E99	Syst
1985	4,880.0	4,880.0	4,880.0	1.0E-99	1.0E99	Syst
1986	9,080.0	9,080.0	9,080.0	1.0E-99	1.0E99	Syst
1987	7,320.0	7,320.0	7,320.0	1.0E-99	1.0E99	Syst
1988	11,200.0	11,200.0	11,200.0	1.0E-99	1.0E99	Syst
1989	6,590.0	6,590.0	6,590.0	1.0E-99	1.0E99	Syst
1990	18,400.0	18,400.0	18,400.0	1.0E-99	1.0E99	Syst
1991	6,390.0	6,390.0	6,390.0	1.0E-99	1.0E99	Syst
1992	16,800.0	16,800.0	16,800.0	1.0E-99	1.0E99	Syst
1993	13,600.0	13,600.0	13,600.0	1.0E-99	1.0E99	Syst

1994	12,700.0		12,700.0	12,700.0		1.0E-99	1.0E99	Syst	
1995	21,400.0	- [21,400.0	21,400.0		1.0E-99	1.0E99	Syst	
1996	9,520.0	- 1	9,520.0	9,520.0		1.0E-99	1.0E99	Syst	
1997	22,200.0	-	22,200.0	22,200.0		1.0E-99	1.0E99	Syst	1
1998	8,260.0	- 1	8,260.0	8,260.0		1.0E-99	1.0E99	Syst	1
1999	10,900.0	- 1	10,900.0	10,900.0		1.0E-99	1.0E99	Syst	1
2000	1,850.0	- 1	1,850.0	1,850.0		1.0E-99	1.0E99	Syst	ı
2001	25,300.0	- 1	25,300.0	25,300.0		1.0E-99	1.0E99	Syst	1
2002	13,300.0	- 1	13,300.0	13,300.0		1.0E-99	1.0E99	Syst	1
2003	8,130.0	- 1	8,130.0	8,130.0		1.0E-99	1.0E99	Syst	
2004	14,500.0	- 1	14,500.0	14,500.0		1.0E-99	1.0E99	Syst	
2005	4,390.0	- 1	4,390.0	4,390.0		1.0E-99	1.0E99	Syst	
2006	1,720.0	- 1	1,720.0	1,720.0		1.0E-99	1.0E99	Syst	
2007	14,400.0	- 1	14,400.0	14,400.0		1.0E-99	1.0E99	Syst	
2008	19,300.0	- 1	19,300.0	19,300.0		1.0E-99	1.0E99	Syst	
2009	8,980.0	- 1	8,980.0	8,980.0		1.0E-99	1.0E99	Syst	
2010	3,660.0	- 1	3,660.0	3,660.0		1.0E-99	1.0E99	Syst	
2011	4,740.0	- 1	4,740.0	4,740.0		1.0E-99	1.0E99	Syst	1
2012	5,230.0	- 1	5,230.0	5,230.0		1.0E-99	1.0E99	Syst	1
2013	5,110.0	- 1	5,110.0	5,110.0		1.0E-99	1.0E99	Syst	1
2014	7,760.0	- 1	7,760.0	7,760.0		1.0E-99	1.0E99	Syst	
2015	7,340.0	- 1	7,340.0	7,340.0		1.0E-99	1.0E99	Syst	
2016	78,000.0	- 1	78,000.0	78,000.0		1.0E-99	1.0E99	Syst	1
2017	6,645.0	1	6,645.0	6,645.0		1.0E-99	1.0E99	Syst	
		- -			-		i		·

Fitted log10 Moments Std Dev Skew	Mean	Variance
EMA at-site data w/o regional info 0.121133 0.348041 -0.099441	3.879208	
EMA w/ regional info and B17b MSE(G) 0.121133 0.348041 -0.042145	3.879208	
EMA w/ regional info and specified MSE(G) 0.121133	3.879208	
EMA Estimate of MSE[G at-site] MSE[G at-site systematic] Effective Record Length [G at-site] Grubbs-Beck Critical Value	0.075513 0.075513 75.000000 0.000000	

--- Final Results ---

<< Plotting Positions >> AmDarling2019-Olive Branch, LA-FLOW-ANNUAL PEAK

| Events Analyzed | Ordered Events |

 Day Mon Year	FLOW CFS	Rank	Water Year	FLOW CFS	H-S Plot Pos
06 Feb 1943	12,400.0	1	2016	78,000.0	1.32
24 Apr 1944	3,110.0	2	2001	25,300.0	2.63
29 Apr 1945	3,460.0	3	1977	22,400.0	3.95
16 Mar 1946	2,870.0	4	1997	22,200.0	5.26
14 Mar 1947	5,240.0	5	1995	21,400.0	6.58
03 Mar 1948	9,900.0	6	1979	21,300.0	7.89
17 Dec 1948	11,300.0	7	1961	19,900.0	9.21
07 Jan 1950	11,300.0	8	1983	19,800.0	10.53
29 Mar 1951	9,900.0	9	2008	19,300.0	11.84
04 Apr 1952	1,530.0	10	1990	18,400.0	13.16
18 May 1953	13,300.0	11	1980	16,900.0	14.47
09 Dec 1953	1,780.0	12	1992	16,800.0	15.79
13 Apr 1955	14,400.0	13	1972	16,400.0	17.11
12 Mar 1956	8,140.0	14	1965	15,500.0	18.42
29 Jun 1957	4,270.0	15	2004	14,500.0	19.74
24 Sep 1958	3,510.0	16	1978	14,500.0	21.05
02 Feb 1959	3,100.0	17	2007	14,400.0	22.37
18 Dec 1959	4,450.0	18	1955	14,400.0	23.68
18 Mar 1961	19,900.0	19	1993	13,600.0	25.00
28 Apr 1962	11,400.0	20	1967	13,400.0	26.32
21 Jan 1963	1,660.0	21	2002	13,300.0	27.63
03 Mar 1964	11,400.0	22	1953	13,300.0	28.95
05 Oct 1964	15,500.0	23	1994	12,700.0	30.26
17 Feb 1966	6,580.0	24	1973	12,500.0	31.58
15 Apr 1967	13,400.0	25	1943	12,400.0	32.89
15 Apr 1968	1,380.0	26 27	1964 1962	11,400.0	34.21 35.53
13 Apr 1969 07 Oct 1969	3,500.0 2,960.0	28	1962	11,400.0 11,300.0	36.84
18 Sep 1971	3,430.0	29	1949	11,300.0	38.16
07 Dec 1971	16,400.0	30	1988	11,200.0	39.47
25 Mar 1973	12,500.0	31	1999	10,900.0	40.79
06 Nov 1973	4,660.0	32	1951	9,900.0	42.11
09 Jun 1975	7,230.0		1948	9,900.0	
25 Mar 1976	2,720.0	34	1996	9,520.0	
22 Apr 1977	22,400.0	35	1986	9,080.0	
30 Nov 1977	14,500.0	36	2009	8,980.0	
22 Apr 1979	21,300.0	37	1998	8,260.0	
28 Mar 1980	16,900.0	38	1956	8,140.0	50.00
11 Dec 1980	2,560.0	39	2003	8,130.0	51.32
17 Feb 1982	4,660.0	40	2014	7,760.0	52.63
06 Apr 1983	19,800.0	41	2015	7,340.0	53.95
13 Feb 1984	4,210.0	42	1987	7,320.0	55.26
23 Oct 1984	4,880.0	43	1975	7,230.0	56.58
30 Oct 1985	9,080.0	44	2017	6,645.0	57.89
19 Jan 1987	7,320.0	45	1989	6,590.0	59.21
03 Apr 1988	11,200.0	46	1966	6,580.0	60.53
01 Jan 1989	6 , 590.0	47	1991	6,390.0	61.84
25 Jan 1990	18,400.0	48	1947	5,240.0	63.16
20 Feb 1991	6,390.0	49	2012	5,230.0	64.47

06	Mar	1992	16,800.0		50	20	013	5,110.0)	65.79	
21	Jan	1993	13,600.0		51	19	985	4,880.0	C	67.11	- 1
28	Jan	1994	12,700.0		52	20	011	4,740.0	C	68.42	- 1
12	Apr	1995	21,400.0		53	19	982	4,660.0)	69.74	
18	Dec	1995	9,520.0		54	19	974	4,660.0)	71.05	
28	Apr	1997	22,200.0		55	19	960	4,450.0)	72.37	
07	Jan	1998	8,260.0		56	20	005	4,390.0)	73.68	
14	Mar	1999	10,900.0		57	19	957	4,270.0)	75.00	
09	Oct	1999	1,850.0		58	19	984	4,210.0)	76.32	
8 0	Jun	2001	25 , 300.0		59	20	010	3,660.0)	77.63	- 1
07	Aug	2002	13,300.0		60	19	958	3,510.0)	78.95	
		2003	8,130.0		61	19	969	3,500.0)	80.26	
15	May	2004	14,500.0		62	19	945	3,460.0)	81.58	
01	Feb	2005	4,390.0		63	19	971	3,430.0)	82.89	- 1
10	Jul	2006	1,720.0		64	19	944	3,110.0)	84.21	
28	Oct	2006	14,400.0		65	19	959	3,100.0)	85.53	
03	Sep	2008	19,300.0		66	19	970	2 , 960.0)	86.84	
28	Mar	2009	8,980.0		67	19	946	2 , 870.0)	88.16	
17	Oct	2009	3,660.0		68	19	976	2,720.0)	89.47	
		2011	4,740.0		69	19	981	2,560.0		90.79	- 1
18	Feb	2012	5 , 230.0		70	20	000	1,850.0)	92.11	- 1
11	Jan	2013	5,110.0		71	19	954	1,780.0)	93.42	
21	Feb	2014	7,760.0		72	20	006	1,720.0)	94.74	-
-	_	2015	7,340.0		73	19	963	1,660.0		96.05	
	_	2016	78 , 000.0		74	19	952	1,530.0		97.37	
03	Jan	2017	6,645.0		75	19	968	1,380.0)	98.68	

^{*} Low outlier plotting positions are computed using Median parameters.

<< Frequency Curve >> AmDarling2019-Olive Branch, LA-FLOW-ANNUAL PEAK

	Computed Curve FLOW,	Variance Log(EMA) CFS		Percent Chance Exceedance		Confidence Limits 0.10 0.90 FLOW, CFS
	72,968.8 57,799.4 47,651.0 38,557.3 30,439.8 21,068.8 14,887.3 7,614.7 3,863.9	0.01987 0.01401 0.01039 0.00746 0.00519 0.00315 0.00227 0.00181 0.00212		0.200 0.500 1.000 2.000 4.000 10.000 20.000 50.000 80.000		118,589.2 52,542.6 86,679.2 43,771.8 67,375.0 37,412.3 51,520.2 31,301.5 38,572.0 25,454.1 25,134.0 18,169.8 17,199.7 13,036.9 8,642.9 6,706.8 4,423.1 3,330.3
	2,701.7 2,007.2 1,144.9	0.00283 0.00403 0.00894	1	90.000 95.000 99.000		3,147.3 2,247.6 2,396.2 1,591.2 1,473.6 791.7
-	··		· j		· – İ	i

<< Systematic Statistics >>
AmDarling2019-Olive Branch, LA-FLOW-ANNUAL PEAK

	Log Transform FLOW, CFS	:	 - -	Number of Events		
S: S: R:	ean tandard Dev tation Skew egional Skew eighted Skew dopted Skew	3.879 0.348 -0.099 0.187 -0.042 -0.042		Historic Events High Outliers Low Outliers Zero Events Missing Events Systematic Events	0 0 0 0	0

--- End of Analytical Frequency Curve ---

USGS 07378000 Comite River near Comite, LA

Regional Skew: 0.02
Regional Skew MSE: 0.302

Plotting Position Type: Hirsch-Stedinger

Upper Confidence Level: 0.1 Lower Confidence Level: 0.9

Use non-standard frequencies

Frequency: 0.2
Frequency: 0.5
Frequency: 1.0
Frequency: 2.0
Frequency: 4.0
Frequency: 10.0
Frequency: 50.0
Frequency: 50.0
Frequency: 90.0
Frequency: 90.0
Frequency: 95.0
Frequency: 99.0

Display ordinate values using 1 digits in fraction part of value

--- End of Input Data ---

```
<< EMA Representation of Data >> AmDarling2019-Comite, LA-FLOW-ANNUAL PEAK
```

1		Val	lue	Thre	shold		- 1
Year	Peak	Low	High	Low	High	Typ	pe

.

A3-28

1944 3,440.0	3,440.0	3,440.0	3,440.0	1.0E99	Syst
1945 4,820.0	4,820.0	4,820.0	3,440.0	1.0E99	Syst Syst
1946 6,010.0	6,010.0	6,010.0	3,440.0	1.0E99	
1947 10,600.0	10,600.0	10,600.0	3,440.0	1.0E99	
1948 10,000.0	10,000.0	10,000.0	3,440.0	1.0E99	Syst
1949 10,300.0	10,300.0	10,300.0	3,440.0	1.0E99	_
1950 10,100.0	10,100.0	10,100.0	3,440.0	1.0E99	
1951 11,500.0	11,500.0	11,500.0	3,440.0	1.0E99	Syst Syst
1952 3,630.0	3,630.0	3,630.0	3,440.0	1.0E99	Syst
1953 20,500.0	20,500.0	20,500.0	3,440.0	1.0E99	
1954 7,150.0	7,150.0	7,150.0	3,440.0	1.0E99	
1955 10,900.0	10,900.0	10,900.0	3,440.0	1.0E99	Syst
1956 9,450.0	9,450.0	9,450.0	3,440.0	1.0E99	-
1957 4,320.0	4,320.0	4,320.0	3,440.0	1.0E99	-
1958 5,000.0	5,000.0	5,000.0	3,440.0	1.0E99	Syst
1959 6,360.0	6,360.0	6,360.0	3,440.0	1.0E99	
1960 6,950.0	6,950.0	6,950.0	3,440.0	1.0E99	_
1961 15,200.0	15,200.0	15,200.0	3,440.0	1.0E99	
1962 20,900.0	20,900.0	20,900.0	3,440.0	1.0E99	Syst
1963 2,420.0	1.0E-6	3,440.0	3,440.0	1.0E99	
1964 15,400.0	15,400.0	15,400.0	3,440.0	1.0E99	_
1965 20,100.0	20,100.0	20,100.0	3,440.0	1.0E99	Syst
1966 13,200.0	13,200.0	13,200.0	3,440.0	1.0E99	_
1967 17,600.0	17,600.0	17,600.0	3,440.0	1.0E99	
1968 2,360.0	1.0E-6	3,440.0	3,440.0	1.0E99	Syst
1969 12,700.0	12,700.0	12,700.0	3,440.0	1.0E99	Syst
1970 13,800.0	13,800.0	13,800.0	3,440.0	1.0E99	Syst
1971 7,310.0	7,310.0	7,310.0	3,440.0	1.0E99	Syst
1972 16,500.0	16,500.0	16,500.0	3,440.0	1.0E99	Syst
1973 14,500.0	14,500.0	14,500.0	3,440.0	1.0E99	Syst
1974 9,210.0	9,210.0	9,210.0	3,440.0	1.0E99	Syst
1975 10,800.0	10,800.0	10,800.0	3,440.0	1.0E99	Syst
1976 9,660.0	9,660.0	9,660.0	3,440.0	1.0E99	Syst
1977 24,100.0	24,100.0	24,100.0	3,440.0	1.0E99	Syst
1978 16,400.0	16,400.0	16,400.0	3,440.0	1.0E99	Syst
1979 23,900.0	23,900.0	23,900.0	3,440.0	1.0E99	· - ·
1980 20,700.0	20,700.0	20,700.0	3,440.0	1.0E99	
1981 7,250.0	7,250.0	7,250.0	3,440.0	1.0E99	Syst
1982 8,530.0	8,530.0	8,530.0	3,440.0	1.0E99	Syst
1983 37,000.0	37,000.0	37,000.0	3,440.0	1.0E99	
1984 10,300.0	10,300.0	10,300.0	3,440.0	1.0E99	Syst
1985 17,000.0	17,000.0	17,000.0	3,440.0	1.0E99	· - ·
1986 11,600.0	11,600.0	11,600.0	3,440.0	1.0E99	_
1987	11,900.0 18,800.0	11,900.0		1.0E99	_
1988	18,800.0	18,800.0 15,600.0		1.0E99 1.0E99	
1990 23,400.0	23,400.0	15,600.0 23,400.0		1.0E99	
1990 23,400.0	13,600.0	13,600.0	3,440.0	1.0E99	
1992 23,100.0	23,100.0	23,100.0		1.0E99	
1993 30,400.0	30,400.0	30,400.0	3,440.0	1.0E99	_
1994 14,600.0	14,600.0	14,600.0	3,440.0	1.0E99	
1995 21,500.0	21,500.0	21,500.0	3,440.0	1.0E99	
1996 19,600.0	19,600.0	19,600.0		1.0E99	
1997 20,500.0	20,500.0	20,500.0	3,440.0	1.0E99	
1998 17,300.0	17,300.0	17,300.0	3,440.0	1.0E99	
1999 12,600.0	12,600.0	12,600.0	3,440.0	1.0E99	
2000 5,110.0	5,110.0	5,110.0	3,440.0	1.0E99	
2001 23,200.0	23,200.0	23,200.0	3,440.0	1.0E99	
2002 7,900.0	7,900.0	7,900.0		1.0E99	
2003 19,100.0	19,100.0	19,100.0		1.0E99	
2004 20,000.0	20,000.0	20,000.0	•	1.0E99	Syst
2005 13,300.0	13,300.0	13,300.0	3,440.0	1.0E99	

	2006	2,440.0		1.0E-6	3,440.0		3,440.0	1.0E99	Syst	
	2007	21,300.0		21,300.0	21,300.0		3,440.0	1.0E99	Syst	
	2008	23,800.0		23,800.0	23,800.0		3,440.0	1.0E99	Syst	
	2009	13,700.0		13,700.0	13,700.0		3,440.0	1.0E99	Syst	
	2010	9,560.0		9,560.0	9,560.0		3,440.0	1.0E99	Syst	
	2011	9,570.0		9,570.0	9,570.0		3,440.0	1.0E99	Syst	
	2012	10,000.0		10,000.0	10,000.0		3,440.0	1.0E99	Syst	
	2013	11,300.0		11,300.0	11,300.0		3,440.0	1.0E99	Syst	
	2014	9,100.0		9,100.0	9,100.0		3,440.0	1.0E99	Syst	
	2015	9,420.0		9,420.0	9,420.0		3,440.0	1.0E99	Syst	
	2016	71,000.0		71,000.0	71,000.0		3,440.0	1.0E99	Syst	
1			-			1.		-		

Fitted log10 Moments		Mean	Variance
Std Dev Skew			
EMA at-site data w/o 0.076078 0.275823	_	4.074185	
EMA w/ regional info 0.074975 0.273815		4.074864	
	and specified MSE(G)	4.074864	

<pre>EMA Estimate of MSE[G at-site]</pre>	0.101976
MSE[G at-site systematic]	0.101976
Effective Record Length [G at-site]	73.000000
Grubbs-Beck Critical Value	3,440.000000

--- Final Results ---

<< Plotting Positions >> AmDarling2019-Comite, LA-FLOW-ANNUAL PEAK

		Ever	nts An	alyzed			Order	ed Events		
				FLOW			Water	FLOW	H-S	
	Day	Mon	Year	CFS		Rank	Year	CFS	Plot Pos	
					- -					-
	25	Apr	1944	3,440.0		1	2016	71,000.0	1.35	
	01	May	1945	4,820.0		2	1983	37,000.0	2.70	
	16	May	1946	6,010.0		3	1993	30,400.0	4.05	
	14	Mar	1947	10,600.0		4	1977	24,100.0	5.40	
	04	Mar	1948	10,000.0		5	1979	23,900.0	6.75	
	24	Mar	1949	10,300.0		6	2008	23,800.0	8.10	
	08	Jan	1950	10,100.0		7	1990	23,400.0	9.45	
	30	Mar	1951	11,500.0		8	2001	23,200.0	10.80	

05 Apr 1952	3,630.0	9	1992	23,100.0	12.16	1
19 May 1953	20,500.0	10	1995	21,500.0	13.51	i
10 Dec 1953	7,150.0	11	2007	21,300.0	14.86	
				•		
15 Apr 1955	10,900.0	12	1962	20,900.0	16.21	-
13 Mar 1956	9,450.0	13	1980	20,700.0	17.56	!
05 Apr 1957	4,320.0	14	1997	20,500.0	18.91	
24 Mar 1958	5,000.0	15	1953	20,500.0	20.26	
03 Feb 1959	6,360.0	16	1965	20,100.0	21.61	
18 Dec 1959	6,950.0	17	2004	20,000.0	22.96	
19 Mar 1961	15,200.0	18	1996	19,600.0	24.31	
29 Apr 1962	20,900.0	19	2003	19,100.0	25.66	
21 Jan 1963	2,420.0	20	1988	18,800.0	27.01	
04 Mar 1964	15,400.0	21	1967	17,600.0	28.36	
06 Oct 1964	20,100.0	22	1998	17,300.0	29.71	
12 Feb 1966	13,200.0	23	1985	17,000.0	31.06	
14 Apr 1967	17,600.0	24	1972	16,500.0	32.41	1
23 Mar 1968	2,360.0	25	1978	16,400.0	33.76	i
13 Apr 1969	12,700.0	26	1989	15,600.0	35.11	i
07 Oct 1969	13,800.0	27	1964	15,400.0	36.47	i
17 Sep 1971	7,310.0	28	1961	15,200.0	37.82	i
08 Dec 1971	16,500.0	29	1994	14,600.0	39.17	i
26 Mar 1973	14,500.0	30	1973	14,500.0	40.52	i
20 Mar 1973 20 Jan 1974	9,210.0	30	1970	13,800.0	41.87	
08 Jan 1975	10,800.0	31	2009	13,700.0	43.22	
26 Mar 1976	9,660.0	33	1991	13,600.0	44.57	
23 Apr 1977	24,100.0	34	2005	13,300.0	45.92	!
01 Dec 1977	16,400.0	35	1966	13,200.0	47.27	!
23 Apr 1979	23,900.0	36	1969	12,700.0	48.62	
29 Mar 1980	20,700.0	37	1999	12,600.0	49.97	
05 May 1981	7,250.0	38	1987	11,900.0	51.32	
16 Feb 1982	8,530.0	39	1986	11,600.0	52.67	
07 Apr 1983	37,000.0	40	1951	11,500.0	54.02	
11 Dec 1983	10,300.0	41	2013	11,300.0	55.37	
23 Oct 1984	17,000.0	42	1955	10,900.0	56.72	
31 Oct 1985	11,600.0	43	1975	10,800.0	58.07	
12 Aug 1987	11,900.0	44	1947	10,600.0	59.43	
03 Apr 1988	18,800.0	45	1984	10,300.0	60.78	
28 Jun 1989	15,600.0	46	1949	10,300.0	62.13	
26 Jan 1990	23,400.0	47	1950	10,100.0	63.48	
20 Feb 1991	13,600.0	48	2012	10,000.0	64.83	
07 Mar 1992	23,100.0	49	1948	10,000.0	66.18	
21 Jan 1993	30,400.0	50	1976	9,660.0	67.53	1
29 Jan 1994	14,600.0	51	2011	9,570.0	68.88	i
12 Apr 1995	21,500.0	52	2010	9,560.0	70.23	i
19 Dec 1995	19,600.0	53	1956	9,450.0	71.58	i
28 Apr 1997	20,500.0	54	2015	9,420.0	72.93	i
08 Jan 1998	17,300.0	55	1974	9,210.0	74.28	i
15 Mar 1999	12,600.0	56	2014	9,100.0	75.63	
06 May 2000	5,110.0	57	1982	8,530.0	76.98	1
00 May 2000 09 Jun 2001	23,200.0	58	2002	7,900.0	78.33	
10 Apr 2002	7,900.0	59	1971	7,310.0	79.68	
22 Feb 2003	19,100.0	60	1971	7,250.0	81.03	
44 FED 4003	I 9, I 0 0 . 0	1 00	T 20 T	1,200.0	01.03	ı

	16 May	2004	20,000.0		61	1954	7,150.0	82.38	- 1
	01 Feb	2005	13,300.0		62	1960	6,950.0	83.74	- 1
	30 Apı	2006	2,440.0		63	1959	6,360.0	85.09	
	28 Oct	2006	21,300.0		64	1946	6,010.0	86.44	- 1
	04 Sep	2008	23,800.0		65	2000	5,110.0	87.79	
	29 Mai	2009	13,700.0		66	1958	5,000.0	89.14	
	05 Feb	2010	9,560.0		67	1945	4,820.0	90.49	- 1
	09 Mai	2011	9,570.0		68	1957	4,320.0	91.84	
	19 Feb	2012	10,000.0		69	1952	3,630.0	93.19	
	09 Jar	n 2013	11,300.0		70	1944	3,440.0	94.54	
	22 Feb	2014	9,100.0		71	2006	2,440.0*	96.32	
	03 Mai	2015	9,420.0		72	1963	2,420.0*	97.68	
	14 Aug	g 2016	71,000.0		73	1968	2,360.0*	99.05	
-				- -					

^{*} Outlier

<< Frequency Curve >>
AmDarling2019-Comite, LA-FLOW-ANNUAL PEAK

	Computed Curve FLOW,	Variance Log(EMA) CFS		Percent Chance Exceedance	 -	Confidence Limits 0.10 0.90 FLOW, CFS
	56,983.6 49,707.3 44,224.1 38,752.6 33,279.5 25,991.8 20,350.1	0.00823 0.00577 0.00426 0.00306 0.00217 0.00143 0.00117		0.200 0.500 1.000 2.000 4.000 10.000 20.000	 	78,785.7 45,254.0 65,066.4 40,921.6 55,645.6 37,357.7 46,971.7 33,513.4 38,977.6 29,357.3 29,339.0 23,350.9 22,591.8 18,409.4
	12,294.6 7,076.4 5,197.5 3,986.3 2,361.3	0.00115 0.00171 0.00268 0.00425 0.01046		50.000 80.000 90.000 95.000 99.000		13,591.4 11,098.3 7,935.6 6,177.5 5,949.1 4,318.5 4,687.9 3,112.8 3,005.4 1,564.6

 -	Log Transform FLOW, CFS	ı: 	 -	Number of Events		
	Mean	4.075	i	Historic Events		0
	Standard Dev	0.274		High Outliers	0	1
	Station Skew	-0.493		Low Outliers	3	
	Regional Skew	0.020		Zero Events	0	
	Weighted Skew	-0.326		Missing Events	0	

^{*} Low outlier plotting positions are computed using Median parameters.

	Adopted	Skew	-0.326		Systematic	Events	73		
-				1				!	1

--- End of Analytical Frequency Curve ---

USGS 07376000 Tickfaw River at Holden, LA

Regional Skew: 0.061
Regional Skew MSE: 0.302

Plotting Position Type: Hirsch-Stedinger

Upper Confidence Level: 0.1 Lower Confidence Level: 0.9

Use non-standard frequencies

Frequency: 0.2
Frequency: 0.5
Frequency: 1.0
Frequency: 2.0
Frequency: 4.0
Frequency: 10.0
Frequency: 50.0
Frequency: 50.0
Frequency: 90.0
Frequency: 90.0
Frequency: 95.0
Frequency: 99.0

Display ordinate values using 1 digits in fraction part of value
--- End of Input Data ---

<< EMA Representation of Data >> AmDarling2019-Holden, LA-FLOW-ANNUAL PEAK

1		1	Value			Thresh	old	1
Year	Peak		Low	High		Low	High	Type
		-						
1941	5,740.0		5,740.0	5,740.0		1,260.0	1.0E99	Syst
1942	3,380.0		3,380.0	3,380.0		1,260.0	1.0E99	Syst
1943	9,680.0		9,680.0	9,680.0		1,260.0	1.0E99	Syst
1944	2,340.0		2,340.0	2,340.0		1,260.0	1.0E99	Syst
1945	2,230.0		2,230.0	2,230.0		1,260.0	1.0E99	Syst
1946	3,650.0		3,650.0	3,650.0		1,260.0	1.0E99	Syst
1947	6,640.0		6,640.0	6,640.0		1,260.0	1.0E99	Syst
1948	6,640.0		6,640.0	6,640.0		1,260.0	1.0E99	Syst
1949	6,640.0		6,640.0	6,640.0		1,260.0	1.0E99	Syst
1950	5,740.0		5,740.0	5,740.0		1,260.0	1.0E99	Syst
1951	4,770.0		4,770.0	4,770.0		1,260.0	1.0E99	Syst
1952	1,450.0		1,450.0	1,450.0		1,260.0	1.0E99	Syst
1953	8,400.0		8,400.0	8,400.0		1,260.0	1.0E99	Syst

	1954	3,200.0	3,200.0	3,200.0	1,260.0	1.0E99	Syst
	1955	5,180.0	5,180.0	5,180.0	1,260.0	1.0E99	Syst
i	1956		4,610.0	4,610.0		1.0E99	Syst
i	1957		2,520.0	2,520.0		1.0E99	Syst
i	1958	4,170.0	4,170.0	4,170.0		1.0E99	Syst
	1959	4,750.0	4,750.0	4,750.0	1,260.0	1.0E99	_
- !							Syst
	1960	2,200.0	2,200.0	2,200.0	,	1.0E99	Syst
- !	1961	7,820.0	7,820.0	7,820.0	· •	1.0E99	Syst
	1962	14,500.0	14,500.0	14,500.0	1,260.0	1.0E99	Syst
-	1963	800.0	1.0E-6	1,260.0	,	1.0E99	Syst
	1964	6,200.0	6,200.0	6,200.0	1,260.0	1.0E99	Syst
	1965	6,160.0	6,160.0	6,160.0	1,260.0	1.0E99	Syst
	1966	12,900.0	12,900.0	12,900.0	1,260.0	1.0E99	Syst
	1967	12,000.0	12,000.0	12,000.0	1,260.0	1.0E99	Syst
	1968	4,430.0	4,430.0	4,430.0		1.0E99	Syst
i	1969	6,170.0	6,170.0	6,170.0		1.0E99	Syst
i	1970		1,340.0	1,340.0		1.0E99	Syst
i	1971		2,780.0	2,780.0		1.0E99	Syst
	1972	6,570.0	6,570.0	6,570.0		1.0E99	Syst
	1973	11,200.0	11,200.0	11,200.0		1.0E99	-
	1973		•	•			Syst
		. ,	19,000.0	19,000.0	· •	1.0E99	Syst
	1975	6,020.0	6,020.0	6,020.0	1,260.0	1.0E99	Syst
	1976	•	1,470.0	1,470.0		1.0E99	Syst
- !	1977	•	18,100.0	18,100.0		1.0E99	Syst
	1978	9,100.0	9,100.0	9,100.0		1.0E99	Syst
	1979	17,600.0	17,600.0	17,600.0	1,260.0	1.0E99	Syst
	1980	•	13,100.0	13,100.0	· •	1.0E99	Syst
-	1981	1,710.0	1,710.0	1,710.0	· •	1.0E99	Syst
	1982	2,960.0	2,960.0	2,960.0	1,260.0	1.0E99	Syst
	1983	22,500.0	22,500.0	22,500.0	1,260.0	1.0E99	Syst
	1984	2,500.0	2,500.0	2,500.0	1,260.0	1.0E99	Syst
	1985	3,910.0	3,910.0	3,910.0	1,260.0	1.0E99	Syst
	1986	7,120.0	7,120.0	7,120.0	1,260.0	1.0E99	Syst
	1987	5,870.0	5,870.0	5,870.0	1,260.0	1.0E99	Syst
	1988	6,030.0	6,030.0	6,030.0	1,260.0	1.0E99	Syst
	1989	4,330.0	4,330.0	4,330.0	1,260.0	1.0E99	Syst
i	1990		13,500.0	13,500.0	1,260.0	1.0E99	Syst
i	1991	7,250.0	7,250.0	7,250.0		1.0E99	Syst
i	1992	7,830.0	7,830.0	7,830.0	1,260.0	1.0E99	Syst
i	1993	18,300.0	18,300.0	18,300.0	1,260.0	1.0E99	Syst
i	1994	12,800.0	12,800.0	12,800.0	1,260.0	1.0E99	Syst
i	1995	11,700.0	11,700.0	11,700.0	1,260.0	1.0E99	Syst
	1996	7,950.0	7,950.0	7,950.0	1,260.0	1.0E99	Syst
	1997	6,550.0	6,550.0	6,550.0		1.0E99	_
	1998	8,220.0	8,220.0	8,220.0		1.0E99	
	1999	6,680.0	6,680.0	6,680.0		1.0E99	_
			1.0E-6				_
	2000	435.0		1,260.0	•	1.0E99	_
- !	2001	7,640.0	7,640.0	7,640.0		1.0E99	-
	2002	4,910.0	4,910.0	4,910.0		1.0E99	_
	2003	5,300.0	5,300.0	5,300.0	•	1.0E99	-
- !	2004	8,680.0	8,680.0	8,680.0	· •	1.0E99	-
- !	2005	4,250.0	4,250.0	4,250.0		1.0E99	-
	2006	1,260.0	1,260.0	1,260.0	•	1.0E99	_
-	2007	5,340.0	5,340.0	5,340.0	•	1.0E99	-
-	2008	5,140.0	5,140.0	5,140.0	· •	1.0E99	_
-	2009	9,790.0	9,790.0	9,790.0		1.0E99	
	2010	5,880.0	5,880.0	5,880.0	1,260.0	1.0E99	Syst
	2011	10,700.0	10,700.0	10,700.0		1.0E99	Syst
	2012	4,380.0	4,380.0	4,380.0		1.0E99	Syst
	2013	9,660.0	9,660.0	9,660.0	1,260.0	1.0E99	Syst
	2014	3,940.0	3,940.0	3,940.0	1,260.0	1.0E99	Syst
	2015	3,100.0	3,100.0	3,100.0	1,260.0	1.0E99	Syst
	2016	35,800.0	35,800.0	35,800.0	1,260.0	1.0E99	Syst

2017	5,242.0	5,242.0	5,242.0	1,260.0	1.0E99	Syst

Fitted log10 Moments	Mean	Variance
Std Dev Skew		
EMA at-site data w/o regional info	3.751940	
0.104299 0.322953 -0.353858		
EMA $w/$ regional info and B17b MSE(G)	3.752269	
0.103677 0.321989 -0.243561		
EMA w/ regional info and specified MSE(G)	3.752269	
0.103677 0.321989 -0.243561		

EMA Estimate of MSE[G at-site]	0.088423
MSE[G at-site systematic]	0.088423
Effective Record Length [G at-site]	77.00000
Grubbs-Beck Critical Value	1,260.000000

--- Final Results ---

<< Plotting Positions >> AmDarling2019-Holden, LA-FLOW-ANNUAL PEAK

-		Ever	nts Ana	alyzed			Ordere	ed Events		1
				FLOW			Water	FLOW	H-S	
	Day	Mon	Year	CFS		Rank	Year	CFS	Plot Pos	
					- -					٠
	17	Dec	1940	5,740.0		1	2016	35,800.0	1.28	
	19	Sep	1942	3,380.0		2	1983	22,500.0	2.56	
	22	Mar	1943	9,680.0		3	1974	19,000.0	3.84	
	01	Apr	1944	2,340.0		4	1993	18,300.0	5.13	
	02	May	1945	2,230.0		5	1977	18,100.0	6.41	
	18	Mar	1946	3,650.0		6	1979	17,600.0	7.69	
	03	Apr	1947	6,640.0		7	1962	14,500.0	8.97	
	05	Mar	1948	6,640.0		8	1990	13,500.0	10.25	
	24	Mar	1949	6,640.0		9	1980	13,100.0	11.53	
	09	Jun	1950	5,740.0		10	1966	12,900.0	12.82	
	31	Mar	1951	4,770.0		11	1994	12,800.0	14.10	
	07	Apr	1952	1,450.0		12	1967	12,000.0	15.38	
	20	May	1953	8,400.0		13	1995	11,700.0	16.66	
	06	Dec	1953	3,200.0		14	1973	11,200.0	17.94	
	04	Aug	1955	5,180.0		15	2011	10,700.0	19.22	
	14	Mar	1956	4,610.0		16	2009	9,790.0	20.51	

	21 Sep 1957	2,520.0	17	1943	9,680.0	21.79	
	16 Nov 1957	4,170.0	18	2013	9,660.0	23.07	
- 1	04 Jun 1959	4,750.0	19	1978	9,100.0	24.35	
1	07 Feb 1960	2,200.0	20	2004	8,680.0	25.63	
i	23 Feb 1961	7,820.0	21	1953	8,400.0	26.91	
	29 Apr 1962	14,500.0	22	1998	8,220.0	28.20	
-	_	<u>-</u>			•		
	26 Feb 1963	800.0	23	1996	7,950.0	29.48	
	05 Mar 1964	6,200.0	24	1992	7,830.0	30.76	
	07 Oct 1964	6,160.0	25	1961	7,820.0	32.04	
	14 Feb 1966	12,900.0	26	2001	7,640.0	33.32	
1	15 Apr 1967	12,000.0	27	1991	7,250.0	34.60	
i	12 Apr 1968	4,430.0	28	1986	7,120.0	35.89	
i	15 Apr 1969	6,170.0	29	1999	6,680.0	37.17	
i	05 Mar 1970	1,340.0	30	1949	6,640.0	38.45	
!	20 Sep 1971	2,780.0	31	1948	6,640.0	39.73	
-	09 Dec 1971	6,570.0	32	1947	6,640.0	41.01	
	26 Mar 1973	11,200.0	33	1972	6 , 570.0	42.29	
	23 May 1974	19,000.0	34	1997	6,550.0	43.57	
	10 Jan 1975	6 , 020.0	35	1964	6,200.0	44.86	
1	27 Mar 1976	1,470.0	36	1969	6,170.0	46.14	
i	22 Apr 1977	18,100.0	37	1965	6,160.0	47.42	
i	01 Dec 1977	9,100.0	38	1988	6,030.0	48.70	
i	23 Apr 1979	17,600.0	39	1975	6,020.0	49.98	
	-				5,880.0		
!	31 Mar 1980	13,100.0	40	2010	•	51.26	
	12 Feb 1981	1,710.0	41	1987	5,870.0	52.55	
-	20 Feb 1982	2,960.0	42	1950	5,740.0	53.83	
	07 Apr 1983	22,500.0	43	1941	5,740.0	55.11	
	30 Dec 1983	2,500.0	44	2007	5,340.0	56.39	
	28 Feb 1985	3,910.0	45	2003	5,300.0	57.67	
1	31 Oct 1985	7,120.0	46	2017	5,242.0	58.95	
i	02 Mar 1987	5,870.0	47	1955	5,180.0	60.24	
i	04 Apr 1988	6,030.0	48	2008	5,140.0	61.52	
i	04 Jan 1989	4,330.0	49	2002	4,910.0	62.80	
1	27 Jan 1990	13,500.0	50	1951	4,770.0	64.08	
-							
!	12 May 1991	7,250.0	51	1959	4,750.0	65.36	
-	07 Mar 1992	7,830.0	52	1956	4,610.0	66.64	
	22 Jan 1993	18,300.0	53	1968	4,430.0	67.93	
	30 Jan 1994	12,800.0	54	2012	4,380.0	69.21	
	13 Apr 1995	11,700.0	55	1989	4,330.0	70.49	
	21 Dec 1995	7,950.0	56	2005	4,250.0	71.77	
1	27 Feb 1997	6,550.0	57	1958	4,170.0	73.05	
i	08 Jan 1998	8,220.0	58	2014	3,940.0	74.33	
i	15 Mar 1999	6,680.0	59	1985	3,910.0	75.62	
i	14 Sep 2000	435.0	60	1946		76.90	
1	_						
l J	08 Jun 2001	7,640.0	61	1942		78.18	
1	29 Sep 2002	4,910.0	62	1954		79.46	
	10 Apr 2003		63	2015		80.74	
	17 May 2004		64	1982		82.02	
	03 Feb 2005	4,250.0	65	1971	2,780.0	83.30	
	28 Feb 2006	1,260.0	66	1957	2,520.0	84.59	
	02 Jan 2007	5,340.0	67	1984	2,500.0	85.87	
	04 Sep 2008	5,140.0	68	1944	2,340.0	87.15	
	<u> </u>	,			•	- 1	

	30 Mar	2009	9,790.0		69	1945	2,230.0	88.43	
	20 Dec	2009	5,880.0		70	1960	2,200.0	89.71	
	11 Mar	2011	10,700.0		71	1981	1,710.0	90.99	
	01 Sep	2012	4,380.0		72	1976	1,470.0	92.28	
	11 Jan	2013	9,660.0		73	1952	1,450.0	93.56	
	24 Feb	2014	3,940.0		74	1970	1,340.0	94.84	
	07 Jan	2015	3,100.0		75	2006	1,260.0	96.12	
	13 Aug	2016	35,800.0		76	1963	800.0*	97.80	
	23 Jan	2017	5,242.0		77	2000	435.0*	99.10	
-				- -					

^{*} Outlier

<< Frequency Curve >> AmDarling2019-Holden, LA-FLOW-ANNUAL PEAK

	Computed Curve FLOW,	Variance Log(EMA) CFS	 -	Percent Chance Exceedance	- - -	Confidence 0.10 FLOW, (0.90
	38,413.3 32,211.1 27,749.5 23,484.8 19,413.0	0.01190 0.00833 0.00615 0.00441 0.00311	 - - -	0.200 0.500 1.000 2.000 4.000		56,915.7 44,674.5 36,685.6 29,664.8 23,510.6	29,208.1 25,574.4 22,721.2 19,776.4 16,742.5
	14,309.0 10,625.9 5,825.4 3,060.4 2,148.5 1,589.7 883.3	0.00202 0.00161 0.00152 0.00213 0.00326 0.00510 0.01241		10.000 20.000 50.000 80.000 90.000 95.000 99.000		16,548.8 12,022.4 6,537.0 3,480.5 2,495.3 1,899.9 1,150.2	12,621.4 9,458.3 5,182.9 2,633.7 1,756.2 1,216.9 567.7

<< Systematic Statistics >> AmDarling2019-Holden, LA-FLOW-ANNUAL PEAK

	Log Transfo		 - -	Number of Event	.s	
i	Mean	3.752	i	Historic Events		0
1	Standard Dev	0.322		High Outliers	0	1
	Station Skew	-0.354		Low Outliers	2	- 1
	Regional Skew	0.061		Zero Events	0	- 1
	Weighted Skew	-0.244		Missing Events	0	- 1
	Adopted Skew	-0.244		Systematic Events		77
-			- -			

--- End of Analytical Frequency Curve ---

^{*} Low outlier plotting positions are computed using Median parameters.

USGS 07373550 MOORES BRANCH NR WOODVILLE, MS

Regional Skew: -0.025 Regional Skew MSE: 0.3025

Plotting Position Type: Hirsch-Stedinger

Upper Confidence Level: 0.1 Lower Confidence Level: 0.9

Use non-standard frequencies

--- End of Input Data ---

Frequency: 0.2
Frequency: 0.5
Frequency: 1.0
Frequency: 2.0
Frequency: 4.0
Frequency: 10.0
Frequency: 20.0
Frequency: 50.0
Frequency: 80.0
Frequency: 90.0
Frequency: 95.0
Frequency: 99.0

Display ordinate values using 1 digits in fraction part of value

<< EMA Representation of Data >>

MOORES BRANCH-WOODVILLE, MS-FLOW-ANNUAL PEAK

 Year	Peak	Val	lue High	 Low	Threshold High	
1955	416.0	416.0	416.0	1.0	E-99 1.0E9	9 Hist
1956		1.0E-99	9 416.0	4	16.0 1.0E9	9 Cens
1957	100.0	100.0	100.0	1.0	E-99 1.0E9	9 Syst
1958	200.0	200.0	200.0	1.0	E-99 1.0E9	9 Syst
1959	138.0	138.0	138.0	1.0	E-99 1.0E9	9 Syst
1960	178.0	178.0	178.0	1.0	E-99 1.0E9	9 Syst
1961	206.0	206.0	206.0	1.0	E-99 1.0E9	9 Syst
1962	353.0	353.0	353.0	1.0	E-99 1.0E9	9 Syst
1963	260.0	260.0	260.0	1.0	E-99 1.0E9	9 Syst
1964	202.0	202.0	202.0	1.0	E-99 1.0E9	9 Syst
1965	193.0	193.0	193.0	1.0	E-99 1.0E9	9 Syst
1966	182.0	182.0	182.0	1.0	E-99 1.0E9	9 Syst
1967	241.0	241.0	241.0	1.0	E-99 1.0E9	9 Syst
1968	246.0	246.0	246.0	1.0	E-99 1.0E9	9 Syst
1969	66.0	66.0	66.0	1.0	E-99 1.0E9	9 Syst
1970	120.0	120.0	120.0	1.0	E-99 1.0E9	9 Syst
1971	110.0	110.0	110.0	1.0	E-99 1.0E9	9 Syst
1972	346.0	346.0	346.0	1.0	E-99 1.0E9	9 Syst

1973	455.0	455.0	455.0	1.0E-99	1.0E99	Syst	ı
1974	225.0		225.0		1.0E99	_	
1975	354.0	354.0	354.0		1.0E99	_	
1976	180.0	180.0	180.0		1.0E99	_	
1977	224.0	224.0	224.0	•	1.0E99	_	
1978	330.0	330.0	330.0	'	1.0E99	_	
1979	148.0	148.0	148.0		1.0E99		
1980	255.0	255.0	255.0		1.0E99	Syst Syst	
1981	264.0	264.0	264.0		1.0E99	_	
1981	215.0	215.0	215.0		1.0E99	_	
1983	423.0	423.0	423.0		1.0E99	_	
1984	198.0	198.0	198.0		1.0E99	_	
1985	360.0		360.0			_	
1986	167.0	360.0	167.0		1.0E99	Syst	
1987	218.0	167.0	218.0		1.0E99	Syst	
1988	126.0	218.0	126.0		1.0E99	_	
1989	257.0	126.0	257.0	'	1.0E99	_	
		257.0			1.0E99	_	
1990	235.0		235.0		1.0E99	_	
1991	138.0	138.0	138.0		1.0E99	Syst	
1992 1993	224.0 345.0	224.0	224.0 345.0		1.0E99		
		345.0		!	1.0E99	_	
1994	360.0	360.0	360.0		1.0E99	_	
1995	223.0		223.0		1.0E99	_	
1996	248.0	248.0	248.0		1.0E99		
1997	138.0	138.0	138.0		1.0E99		
1998	130.0	130.0	130.0		1.0E99		
1999	254.0	254.0	254.0		1.0E99	-	
2000	114.0	114.0	114.0		1.0E99	_	
2001	121.0	121.0	121.0		1.0E99	Syst	
2002	370.0	370.0	370.0		1.0E99	_	
2003 2004	131.0	131.0	131.0		1.0E99	_	
	218.0	218.0	218.0		1.0E99	_	
2005	220.0	220.0	220.0		1.0E99	_	
2006	131.0	131.0	131.0		1.0E99	_	
2007	178.0	178.0	178.0		1.0E99	_	
2008	130.0	130.0	130.0		1.0E99	_	
2009 2010	283.0 137.0	283.0	283.0		1.0E99	_	
2010		137.0	137.0		1.0E99	Syst	
	132.0		132.0		1.0E99	-	
2012	148.0	148.0	148.0	•	1.0E99		
2013	177.0	177.0	177.0		1.0E99	Syst	
2014 2015	191.0 158.0	191.0 158.0	191.0 158.0		1.0E99 1.0E99	_	
2015	272.0	272.0	272.0		1.0E99	Syst Syst	
2016	310.0	310.0	310.0		1.0E99	_	I I
201 <i> </i> 		, J±U.U 	J±0.0	±•∪≌ ୬୬ 	エ・Uビシシ	byst 	i I
1		I		I		I	1

Fitted log10 Moments Std Dev Skew		Mean	Variance
EMA at-site data w/o		2.308364	
0.031434 0.177295			
EMA w/ regional info	and B17b MSE(G)	2.308358	
0.031431 0.177288	-0.111338		
EMA w/ regional info	and specified MSE(G)	2.308358	
0.031431 0.177288	-0.111164		

EMA Estimate of MSE[G at-site]	0.091613
MSE[G at-site systematic]	0.093514
Effective Record Length [G at-site]	62.266299
Grubbs-Beck Critical Value	0.000000

--- Final Results ---

<< Plotting Positions >> MOORES BRANCH-WOODVILLE, MS-FLOW-ANNUAL PEAK

Events Analyzed				Ordered Events						
			FLOW		Water	FLOW	H-S			
Day	Mon	Year	CFS	Rank	Year	CFS	Plot Pos			
	7nr	 1955	416.0	 1	1973	455.0	1.19			
	_	1956	410.0	1 2	1983	423.0	2.38			
		1956	100.0] 3	1955	416.0	3.57			
		1957	200.0	4	2002	370.0	6.35			
		1959	138.0	1 5	1994	360.0	7.94			
		1959	178.0	1 6	1985	360.0	9.52			
		1961	206.0	1 7	1975	354.0	11.11			
		1961	353.0	7	1962	353.0	12.70			
		1963	260.0	1 9	1972	346.0	14.29			
		1964	202.0	1 10	1993	345.0	15.87			
		1965	193.0	1 11	1978	330.0	17.46			
		1966	182.0	1 12	2017	310.0	19.05			
	_	1967	241.0	1 13	2009	283.0	20.63			
	_	1968	246.0	1 14	2016	272.0	22.22			
		1968	66.0	1 15	1981	264.0	23.81			
		1970	120.0	16	1963	260.0	25.40			
		1971	110.0	17	1989	257.0	26.98			
	_	1972	346.0	18	1980	255.0	28.57			
		1973	455.0	19	1999	254.0	30.16			
		1974	225.0	20	1996	248.0	31.75			
	_	1975	354.0	21	1968	246.0	33.33			
	_	1976	180.0	22	1967	241.0	34.92			
		1977	224.0		1990	235.0	36.51			
		1977	330.0	24	1974	225.0	38.10			
		1979	148.0	25	1992	224.0	39.68			
1 11	Jan	1980	255.0	26	1977	224.0	41.27			
04	Mar	1981	264.0	27	1995	223.0	42.86			
16	Feb	1982	215.0	28	2005	220.0	44.44			
01	Feb	1983	423.0	29	2004	218.0	46.03			
23	Nov	1983	198.0	30	1987	218.0	47.62			
22	Oct	1984	360.0	31	1982	215.0	49.21			
30	Oct	1985	167.0	32	1961	206.0	50.79			

- 1	1.0	Max	1987	218.0	3	2	1964	202.0	52.38	i
١			1988	126.0		4	1958		53.97	
١			1989	257.0		5	1984	198.0	55.56	
			1990	235.0	3		1965	193.0	57.14	
		_	1991	138.0	3		2014	191.0	58.73	
			1992	224.0		8	1966	182.0	60.32	
			1993	345.0		9	1976		61.90	
			1994	360.0	4		2007	178.0	63.49	
			1995	223.0		1	1960	178.0	65.08	
			1995	248.0	4		2013	177.0	66.67	
			1997	138.0		3	1986	167.0	68.25	
			1998	130.0		4	2015	158.0	69.84	
			1999	254.0	4	5	2012	148.0	71.43	
	03	Apr	2000	114.0	4	6	1979	148.0	73.02	
	19	Jan	2001	121.0	4	7	1997	138.0	74.60	
	26	Mar	2002	370.0	4	8	1991	138.0	76.19	
	22	Feb	2003	131.0	4	9	1959	138.0	77.78	
	14	May	2004	218.0	5	0	2010	137.0	79.37	
	09	Dec	2004	220.0	5	1	2011	132.0	80.95	
	15	Dec	2005	131.0	5	2	2006	131.0	82.54	
	05	Jan	2007	178.0	5	3	2003	131.0	84.13	
	11	Mar	2008	130.0	5	4	2008	130.0	85.71	
	27	Mar	2009	283.0	5	5	1998	130.0	87.30	
	16	Oct	2009	137.0	5	6	1988	126.0	88.89	
	09	Mar	2011	132.0	5	7	2001	121.0	90.48	
	04	Apr	2012	148.0	5	8	1970	120.0	92.06	
	11	Feb	2013	177.0	5	9	2000	114.0	93.65	
	28	Mar	2014	191.0	6	0	1971	110.0	95.24	
	05	Apr	2015	158.0	6	1	1957	100.0	96.83	
ĺ		_	2016	272.0	6	2	1969	66.0	98.41	
ĺ	03	Apr	2017	310.0	6	3	1956	*		
ĺ				i						

^{*} Low outlier plotting positions are computed using Median parameters.

<< Frequency Curve >> MOORES BRANCH-WOODVILLE, MS-FLOW-ANNUAL PEAK

	Computed Curve FLOW,	Variance Log(EMA) CFS		Percent Chance Exceedance		Confidence Lim 0.10 FLOW, CFS	0.90	1 1 1 1
-	623.4	0.00486	. 1	0.200	- -	805.0	524.3	
i	557.8	0.00344	i	0.500	i	691.1	481.7	İ
	508.4	0.00257		1.000		611.0	447.5	
	459.0	0.00186		2.000		535.7	411.0	
	409.1	0.00132		4.000		464.6	371.9	
	341.5	0.00084		10.000		375.7	315.2	
	287.4	0.00064		20.000		311.0	267.2	
	204.9	0.00057		50.000		220.0	190.9	
	144.6	0.00073		80.000		156.1	132.7	

	102.6	0.00150		113.5	89.5
	76.1 	0.00336	 	87.8 	61.2

<< Systematic Statistics >> MOORES BRANCH-WOODVILLE, MS-FLOW-ANNUAL PEAK

Log Transfo		 - -	Number of Event	s 	
Mean Standard Dev Station Skew Regional Skew Weighted Skew Adopted Skew	2.308 0.177 -0.138 -0.025 -0.111 -0.111		Historic Events High Outliers Low Outliers Zero Events Missing Events Systematic Events Historic Period	0 0 0 1	1 61 63

--- End of Analytical Frequency Curve ---

USGS 07375500 Tangipahoa River at Robert, LA

Regional Skew: 0.091
Regional Skew MSE: 0.302

Plotting Position Type: Hirsch-Stedinger

Upper Confidence Level: 0.1 Lower Confidence Level: 0.9

Use non-standard frequencies

Frequency: 0.2
Frequency: 0.5
Frequency: 1.0
Frequency: 2.0
Frequency: 4.0
Frequency: 10.0
Frequency: 20.0
Frequency: 50.0
Frequency: 90.0
Frequency: 90.0
Frequency: 95.0
Frequency: 99.0

Display ordinate values using 1 digits in fraction part of value

--- End of Input Data ---

A3-42 |

		 Value		Thresh	.old	
Year	Peak	Low	High	Low	High	Type
	6,000.0	 6,000.0	6,000.0	 1.0E-99	1.0E99	 Syst
1940	7,690.0	7,690.0	7,690.0	1.0E-99	1.0E99	_
1 1941	11,200.0	11,200.0	11,200.0	1.0E-99	1.0E99	Syst
1 1941	6,250.0	6,250.0	6,250.0	1.0E-99	1.0E99	Syst Syst
1942	35,500.0	35,500.0	35,500.0	1.0E-99	1.0E99	Syst Syst
1943	8,860.0	8,860.0	8,860.0	1.0E-99	1.0E99	Syst Syst
1 1945	5,920.0	5,920.0	5,920.0	1.0E-99	1.0E99	Syst Syst
1 1946	9,410.0	9,410.0	9,410.0	1.0E-99	1.0E99	Syst Syst
1 1947	18,200.0	18,200.0	18,200.0	1.0E-99	1.0E99	Syst Syst
1 1948	24,000.0	24,000.0	24,000.0	1.0E-99	1.0E99	Syst Syst
1 1949	27,700.0	27,700.0	27,700.0	1.0E-99	1.0E99	Syst
1950	14,300.0	14,300.0	14,300.0	1.0E-99	1.0E99	Syst
1951	11,500.0	11,500.0	11,500.0	1.0E-99	1.0E99	Syst
1 1952	2,800.0	2,800.0	2,800.0	1.0E-99	1.0E99	Syst
1953	50,500.0	50,500.0	50,500.0	1.0E-99	1.0E99	Syst
1954	12,400.0	12,400.0	12,400.0	1.0E-99	1.0E99	Syst
1955	13,200.0	13,200.0	13,200.0	1.0E-99	1.0E99	Syst
1 1956	11,900.0	11,900.0	11,900.0	1.0E-99	1.0E99	Syst
1957	7,690.0	7,690.0	7,690.0	1.0E-99	1.0E99	Syst
1958	9,540.0	9,540.0	9,540.0	1.0E-99	1.0E99	Syst
1959	11,500.0	11,500.0	11,500.0	1.0E-99	1.0E99	Syst
1960	5,770.0	5,770.0	5,770.0	1.0E-99	1.0E99	Syst
1961	38,200.0	38,200.0	38,200.0	1.0E-99	1.0E99	Syst
1962	30,100.0	30,100.0	30,100.0	1.0E-99	1.0E99	Syst
1963	2,040.0	2,040.0	2,040.0	1.0E-99	1.0E99	Syst
1964	15,400.0	15,400.0	15,400.0	1.0E-99	1.0E99	Syst
1965	14,800.0	14,800.0	14,800.0	1.0E-99	1.0E99	Syst
1966	30,800.0	30,800.0	30,800.0	1.0E-99	1.0E99	Syst
1967	28,100.0	28,100.0	28,100.0	1.0E-99	1.0E99	Syst
1968	4,730.0	4,730.0	4,730.0	1.0E-99	1.0E99	Syst
1969	18,200.0	18,200.0	18,200.0	1.0E-99	1.0E99	Syst
1970	3,680.0	3,680.0	3,680.0	1.0E-99	1.0E99	Syst
1971	18,500.0	18,500.0	18,500.0	1.0E-99	1.0E99	Syst
1972	18,400.0	18,400.0	18,400.0	1.0E-99	1.0E99	Syst
1973	37,900.0	37,900.0	37,900.0	1.0E-99	1.0E99	Syst
1974	39,500.0	39,500.0	39,500.0	1.0E-99	1.0E99	Syst
1975	15,700.0	15,700.0	15,700.0	1.0E-99	1.0E99	Syst
1976	4,010.0	4,010.0	4,010.0	1.0E-99	1.0E99	Syst
1977	33,600.0	33,600.0	33,600.0	1.0E-99	1.0E99	Syst
1978	13,800.0	13,800.0	13,800.0	1.0E-99	1.0E99	Syst
1979	26,300.0	26,300.0	26,300.0	1.0E-99	1.0E99	Syst
1980	35,300.0	35,300.0	35,300.0	1.0E-99	1.0E99	Syst
1981	10,800.0	10,800.0	10,800.0	1.0E-99	1.0E99	Syst
1982	7,190.0	7,190.0	7,190.0	1.0E-99	1.0E99	Syst
1983	85,000.0	85,000.0	85,000.0	1.0E-99	1.0E99	Syst
1984	11,800.0	11,800.0	11,800.0	1.0E-99	1.0E99	Syst
1985	11,800.0	11,800.0	11,800.0	1.0E-99	1.0E99	Syst
1986	9,570.0	9,570.0	9,570.0	1.0E-99	1.0E99	Syst
1987	20,800.0	20,800.0	20,800.0	1.0E-99	1.0E99	Syst
1988	21,400.0	21,400.0	21,400.0	1.0E-99	1.0E99	Syst
1989	14,800.0	14,800.0	14,800.0	1.0E-99	1.0E99	Syst
1990	36,200.0	36,200.0	36,200.0	1.0E-99	1.0E99	Syst
1991	14,700.0	14,700.0	14,700.0	1.0E-99	1.0E99	Syst

1992	17,700.0		17,700.0	17,700.0		1.0E-99	1.0E99	Syst	
1993	37,800.0		37,800.0	37,800.0		1.0E-99	1.0E99	Syst	
1994	22,900.0		22,900.0	22,900.0		1.0E-99	1.0E99	Syst	
1995	20,800.0		20,800.0	20,800.0		1.0E-99	1.0E99	Syst	
1996	12,700.0		12,700.0	12,700.0		1.0E-99	1.0E99	Syst	
1997	13,700.0		13,700.0	13,700.0		1.0E-99	1.0E99	Syst	
1998	16,200.0		16,200.0	16,200.0		1.0E-99	1.0E99	Syst	
1999	13,500.0		13,500.0	13,500.0		1.0E-99	1.0E99	Syst	
2000	1,480.0		1,480.0	1,480.0		1.0E-99	1.0E99	Syst	
2001	13,700.0		13,700.0	13,700.0		1.0E-99	1.0E99	Syst	
2002	18,600.0		18,600.0	18,600.0		1.0E-99	1.0E99	Syst	
2003	23,500.0		23,500.0	23,500.0		1.0E-99	1.0E99	Syst	
2004	14,600.0		14,600.0	14,600.0		1.0E-99	1.0E99	Syst	
2005	8,140.0		8,140.0	8,140.0		1.0E-99	1.0E99	Syst	
2006	3,190.0		3,190.0	3,190.0		1.0E-99	1.0E99	Syst	
2007	11,700.0		11,700.0	11,700.0		1.0E-99	1.0E99	Syst	
2008	.,		8,800.0	8,800.0		1.0E-99	1.0E99	Syst	
2009	22,400.0		22,400.0	22,400.0		1.0E-99	1.0E99	Syst	
2010	12,700.0		12,700.0	12,700.0		1.0E-99	1.0E99	Syst	
2011	13,400.0		13,400.0	13,400.0		1.0E-99	1.0E99	Syst	
2012	32,500.0		32,500.0	32,500.0		1.0E-99	1.0E99	Syst	
2013	22,800.0		22,800.0	22,800.0		1.0E-99	1.0E99	Syst	
2014	9,830.0		9,830.0	9,830.0		1.0E-99	1.0E99	Syst	
2015	6,120.0		6,120.0	6,120.0		1.0E-99	1.0E99	Syst	
2016	.,		120,000.0	120,000.0		1.0E-99	1.0E99	Syst	
2017	9,875.0		9,875.0	9,875.0		1.0E-99	1.0E99	Syst	
		- -			-				

Fitted log10 Moments Mean Variance Std Dev Skew

EMA at-site data w/o regional info 4.150645
0.113722 0.337227 -0.250359
EMA w/ regional info and B17b MSE(G) 4.150645
0.113722 0.337227 -0.178662
EMA w/ regional info and specified MSE(G) 4.150645
0.113722 0.337227 -0.178662

EMA Estimate of MSE[G at-site] 0.080295

EMA Estimate of MSE[G at-site]	0.080295
MSE[G at-site systematic]	0.080295
Effective Record Length [G at-site]	79.00000
Grubbs-Beck Critical Value	0.00000

--- Final Results ---

<< Plotting Positions >> AmDarling2019-Robert, LA-FLOW-ANNUAL PEAK

	Events Ar	nalyzed	Ordered Events			
		FLOW		Water	FLOW	H-S
Day	Mon Year	CFS	Rank 	Year	CFS	Plot Pos
06	Jun 1939	6,000.0	1	2016	120,000.0	1.25
02	May 1940	7,690.0	2	1983	85,000.0	2.50
18	Dec 1940	11,200.0	3	1953	50,500.0	3.75
19	Sep 1942	6,250.0	4	1974	39,500.0	5.00
22	Mar 1943	35,500.0	5	1961	38,200.0	6.25
	Mar 1944	8,860.0	6	1973	37,900.0	7.50
	May 1945	5 , 920.0	1 7	1993	37,800.0	8.75
	Sep 1946	9,410.0	8	1990	36,200.0	10.00
	Apr 1947	18,200.0	9	1943	35,500.0	11.25
	Mar 1948	24,000.0	10	1980	35,300.0	12.50
	May 1949	27,700.0	11	1977	33,600.0	13.75
	Feb 1950	14,300.0	12	2012	32,500.0	15.00
	Mar 1951	11,500.0	13	1966	30,800.0	16.25
	Apr 1952	2,800.0	14	1962	30,100.0	17.50
	May 1953	50,500.0	15	1967	28,100.0	18.75
	Dec 1953	12,400.0	16	1949	27,700.0	20.00
	Apr 1955	13,200.0	17	1979	26,300.0	21.25
	Feb 1956	11,900.0	18	1948	24,000.0	22.50
19	Sep 1957 Nov 1957	7,690.0 9,540.0	19 20	2003 1994	23,500.0 22,900.0	23.75 25.00
	Jun 1959	11,500.0	20	2013	22,800.0	26.25
	Apr 1960	5,770.0	21	2013	22,400.0	27.50
	Feb 1961	38,200.0	22	1988	21,400.0	28.75
	Nov 1961	30,100.0	24	1995	20,800.0	30.00
	Feb 1963	2,040.0	25	1987	20,800.0	31.25
	Mar 1964	15,400.0	26	2002	18,600.0	32.50
	Oct 1964	14,800.0	27	1971	18,500.0	33.75
	Feb 1966	30,800.0	28	1972	18,400.0	35.00
	Apr 1967	28,100.0	29	1969	18,200.0	36.25
	May 1968	4,730.0	30	1947	18,200.0	37.50
	Apr 1969	18,200.0	31	1992	17,700.0	38.75
05	Mar 1970	3,680.0	32	1998	16,200.0	40.00
17	Sep 1971	18,500.0	33	1975	15,700.0	41.25
07	Dec 1971	18,400.0	34	1964	15,400.0	42.50
19	Apr 1973	37,900.0	35	1989	14,800.0	43.75
	May 1974	39,500.0	36	1965	14,800.0	45.00
	Apr 1975	15,700.0	37	1991	14,700.0	46.25
	Mar 1976	4,010.0	38	2004	14,600.0	47.50
	Apr 1977	33,600.0	39	1950	14,300.0	48.75
	Dec 1977	13,800.0	40	1978	13,800.0	50.00
	Apr 1979	26,300.0	41	2001	13,700.0	51.25
	Mar 1980	35,300.0	42	1997	13,700.0	52.50
	Feb 1981	10,800.0	43	1999	13,500.0	53.75
	Feb 1982	7,190.0	44	2011	13,400.0	55.00
	Apr 1983	85,000.0	45	1955	13,200.0	56.25
	Dec 1983	11,800.0	46	2010	12,700.0	57.50
2/	Feb 1985	11,800.0	47	1996	12,700.0	58.75

31 Oct 1985 9,570.0	48	1954	12,400.0	60.00	
28 Feb 1987	49	1956	11,900.0	61.25	
02 Feb 1988 21,400.0	50	1985	11,800.0	62.50	
31 Mar 1989	51	1984	11,800.0	63.75	
27 Jan 1990 36,200.0	52	2007	11,700.0	65.00	
11 May 1991	53	1959	11,500.0	66.25	
27 Aug 1992 17,700.0	54	1951	11,500.0	67.50	
22 Jan 1993 37,800.0	55	1941	11,200.0	68.75	
30 Jan 1994 22,900.0	56	1981	10,800.0	70.00	
12 Apr 1995	57	2017	9,875.0	71.25	
20 Dec 1995	58	2014	9,830.0	72.50	
26 Feb 1997	59	1986	9,570.0	73.75	
08 Jan 1998	60	1958	9,540.0	75.00	
15 Mar 1999	61	1946	9,410.0	76.25	
21 Dec 1999 1,480.0	62	1944	8,860.0	77.50	
05 Mar 2001	63	2008	8,800.0	78.75	
29 Sep 2002 18,600.0	64	2005	8,140.0	80.00	
01 Jul 2003 23,500.0	65	1957	7,690.0	81.25	
17 May 2004 14,600.0	66	1940	7,690.0	82.50	
03 Feb 2005 8,140.0	67	1982	7,190.0	83.75	
27 Feb 2006 3,190.0	68	1942	6,250.0	85.00	
01 Jan 2007 11,700.0	69	2015	6,120.0	86.25	
16 May 2008 8,800.0	70	1939	6,000.0	87.50	
30 Mar 2009 22,400.0	71	1945	5 , 920.0	88.75	
19 Dec 2009 12,700.0	72	1960	5 , 770.0	90.00	
11 Mar 2011 13,400.0	73	1968	4,730.0	91.25	
01 Sep 2012 32,500.0	74	1976	4,010.0	92.50	
11 Jan 2013 22,800.0	75	1970	3,680.0	93.75	
24 Feb 2014 9,830.0	76	2006	3,190.0	95.00	
04 Mar 2015 6,120.0	77	1952	2,800.0	96.25	
13 Aug 2016 120,000.0	78	1963	2,040.0	97.50	
23 Jan 2017 9,875.0	79	2000	1,480.0	98.75	
					-

^{*} Low outlier plotting positions are computed using Median parameters.

<< Frequency Curve >> AmDarling2019-Robert, LA-FLOW-ANNUAL PEAK

	Computed Curve FLOW,	Variance Log(EMA) CFS		Percent Chance Exceedance		Confidence Limits 0.10 0.90 FLOW, CFS
-			-		-	
	111,802.5	0.01357		0.200		169,959.0 83,409.4
	91,765.9	0.00955		0.500		130,362.4 71,721.3
	77,733.5	0.00708		1.000		105,076.8 62,800.2
	64,640.7	0.00509		2.000		83,293.2 53,826.1
	52,454.7	0.00358		4.000		64,601.3 44,825.9
	37,657.9	0.00228		10.000		44,039.0 32,993.0
	27,352.2	0.00177		20.000		31,153.9 24,222.8
-	14,477.1	0.00162		50.000	ĺ	16,312.2 12,834.0

	7,415.6 5,158.6 3,796.3	0.00215 0.00309 0.00462	80.000 90.000 95.000	 	8,458.9 6,005.0 4,540.4	6,406.5 4,288.3 2,996.0	
i	2,099.6	0.01073	99.000	i-	2,717.7	1,428.2	

<< Systematic Statistics >> AmDarling2019-Robert, LA-FLOW-ANNUAL PEAK

	Log Transfo: FLOW, CFS	rm:	 - -	Number of Events		
i	Mean	4.151	i	Historic Events		0
	Standard Dev	0.337		High Outliers	0	1
	Station Skew	-0.250		Low Outliers	0	1
	Regional Skew	0.091		Zero Events	0	1
	Weighted Skew	-0.179		Missing Events	0	1
	Adopted Skew	-0.179		Systematic Events		79
-			- -			

--- End of Analytical Frequency Curve ---

APPENDIX 4: BOUNDARY CONDITIONS SUPPORTING RESEARCH

Boundary Conditions Supporting Research

water resources / environmental consultants

Amite River Basin Hydraulic Model Boundary Conditions

JULY 30, 2018

AMITE RIVER BASIN HYDRAULIC MODEL BOUNDARY CONDITIONS

Prepared for

Dewberry Consultants, LLC. 2835 Brandywine Road, Suite 100 Atlanta, GA 30341-4015

Prepared by

FTN Associates, Ltd. 124 West Sunbridge, Suite 3 Fayetteville, AR 72703

FTN Project No. 10568-1488-001

July 30, 2018

TABLE OF CONTENTS

1.0	INTRODUCTION	A4-6
2.0	DATA SOURCES	A4-8
3.0	TYPICAL LAKE ELEVATION	A4-11
4.0	ELEVATION OF RECORD	A4-155
5.0	FLOODING LAKE ELEVATIONS	A4-188
6.0	WIND INDUCED LAKE ELEVATIONS	A4-20
7.0	REFERENCES	A4-21

LIST OF TABLES

Table 1	Station Location Information
Table 2	Amite River Peak Discharges vs. Measured Lake Maurepas WSEL A4-19
Table 3	Average Daily Wind Speed vs. Measured Lake Maurepas WSEL
	LIST OF FIGURES
Figure 1	Project Location Map
Figure 2	Streamflow, WSEL, and wind gage station locations in the study area A4-8
Figure 3	Pass Manchac Stage Data
Figure 4	Pass Manchac Stage Duration Curve
Figure 5	Water Surface Elevations at Pass Manchac (May 14-24, 2018)
Figure 6	Rainfall Totals from Hurricane Isaac. Adapted from Berg (2013)
Figure 7	Amite River Discharge vs. Pass Manchac WSEL during Hurricane Isaac A4-21

1.0 INTRODUCTION

This report describes work done by FTN Associates, Ltd. (FTN) under subcontract to Dewberry Consultants LLC (Dewberry) who is under contract with the Louisiana Department of Transportation and Development (DOTD) as their consultant for the Federal Emergency Management Agency (FEMA) Cooperating Technical Partner program. This work fulfills the requirements for the "Hydrologic and Hydraulic Numerical Modeling of the Amite River Basin" Task Order Task 7.3 "Develop Boundary Options."

FTN was tasked with developing a set of downstream boundary conditions for the Amite River Basin Hydraulic Model (model). The downstream end of the model terminates where the Amite River meets Lake Maurepas. A stage hydrograph boundary condition is appropriate for this location due to the backwater effects caused by the lake. The lake is also influenced by diurnal tidal fluctuations and experiences periodic water surface elevation (WSEL) changes due to its connection with the Gulf of Mexico, through the Lake Pontchartrain basin estuary. In developing the boundary condition at this location, the following four conditions were considered at Lake Maurepas:

- 1. Average or "typical" WSEL and tidal fluctuation.
- 2. WSEL of record.
- 3. WSEL during the largest measured flooding events on the Amite River.
- 4. Wind and storm surge influenced WSEL.

Lake Maurepas receives flow from four principal river systems: Amite River, Tickfaw River, Blind River, and Dutch Bayou, along with several minor channels that discharge from the surrounding swamp (see Figure 1). However, direct exchange of flow from the swamp surrounding the lake is limited to the main channels over the normal range of lake elevations by a natural berm along the lake shoreline (URS, 2006). Lake Maurepas normally discharges into Lake Pontchartrain to the northeast through Pass Manchac.

Figure 1: Project Location Map.

2.0 DATA SOURCES

Streamflow, WSEL, and wind speed data were collected from the U.S. Army Corps of Engineers (USACE), U.S. Geological Survey (USGS), and National Oceanic and Atmospheric Administration (NOAA), respectively, for the project area. The location of the stations used in this analysis are shown in Figure 2. Location information is also provided in Table 1.

Figure 2: Streamflow, WSEL, and wind gage station locations in the study area.

Table 1. Station Location Information.

			NAD83		
AGENCY	STATION	NAME	LATITUDE	LONGITUDE	
USGS	07380120	Amite River at Port Vincent, LA	30.332694	-90.852042	
USGS	07380200	Amite River near French Settlement, LA	30.275473	-90.779262	
USGS	07380215	Amite River at Hwy 22 near Maurepas, LA	30.309362	-90.610368	
USACE	85420	Pass Manchac near Pontchatoula	30.281389	-90.400278	
NOAA	USW00012916	New Orleans Airport, LA	29.996910	-90.277510	
NOAA	8761927	New Canal Station, LA	30.026666	-90.113333	

The USACE operates the Pass Manchac near Pontchatoula gage (USACE gage no. 85420), which is located on the Louisiana State Highway 51 bridge on the south side of Pass Manchac. Daily stage data for this gage were obtained, from the USACE New Orleans District. Stage values at this location have been recorded since July 1955 but there is a considerable gap in the data that starts in September 2005 and extends through April 2009. Furthermore, a consistent vertical datum was not used throughout the period of record, and before March 1983 a vertical datum was not established, so that data cannot be used for this analysis.

The USACE originally established the Pass Manchac gage to a vertical datum of 0 feet, NGVD29 in March 1983. Adjustments factors were then used to calibrate the gage back to the zero datum in May 1987 and March 1988 using new target epochs. One final calibration was completed in April 2009, and at this time, the gage adjustment factor was used to shift the gage datum to a 0 feet, NAVD88 datum. Using gage calibration notes from the USACE, all available stage data was first converted to a NAVD88 datum for use in the project.

Streamflow and stage data were downloaded from the USGS's National Water Information System (NWIS) website (https://waterdata.usgs.gov/nwis). The USGS operates three gages on the Amite River in close proximity to Lake Maurepas. However, only the Amite River at Port Vincent, LA (07380120) site records both streamflow and stage. Streamflow data from the USGS's Port Vincent site were used to examine the likelihood of extreme flooding events occurring when lake levels were high in Lake Maurepas. Peak streamflow values have been recorded at the Port Vincent site since 1985. This record coincides with most of the stage data recorded at Pass Manchac. Stage data at the Amite River at Louisiana State Highway 22

near Maurepas, LA (USGS gage no. 07380215) station were also used to examine the water surface slope in Lake Maurepas.

Wind speed data for this project was obtained from NOAA's Climate Data Online website (https://www.ncdc.noaa.gov/cdo-web/). The New Orleans Airport, LA (NOAA station USW00012916) site has recorded daily average wind speed from January 1984. This data was used to examine the effect that high wind speed has on lake levels and the likelihood of an extreme flooding event coinciding with high lake levels that were developed during high wind speed events.

3.0 TYPICAL LAKE ELEVATION

Daily and hourly stage¹ data from the USACE's Pass Manchac near Pontchatoula station were used to develop the "typical" or average downstream boundary condition for the Amite River Basin hydraulic model. Daily values were used to determine the long-term average WSEL and hourly data were used to develop the average diurnal tidal pattern in Lake Maurepas. Figure 3 presents the daily stage data that has been recorded at the Pass Manchac site since March 1983 (i.e., when measurements were referenced to an elevation datum). A stage duration curve was also developed using these data and is presented in Figure 4. The average or "typical" WSEL in Lake Maurepas during this time period is 0.73 feet, NAVD88. The median WSEL during this period is 0.71 feet, NAVD88, and over 98% of the values recorded are between -0.7 and 2.5 feet, NAVD88.

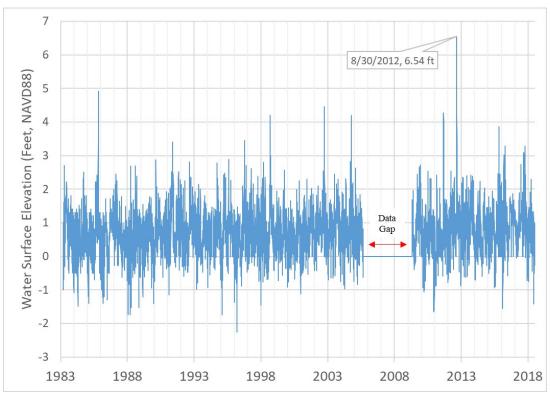


Figure 3: Pass Manchac Stage Data.

¹ Datum of gage is 0.0 ft NAVD88, so stage and WSEL values are the same.

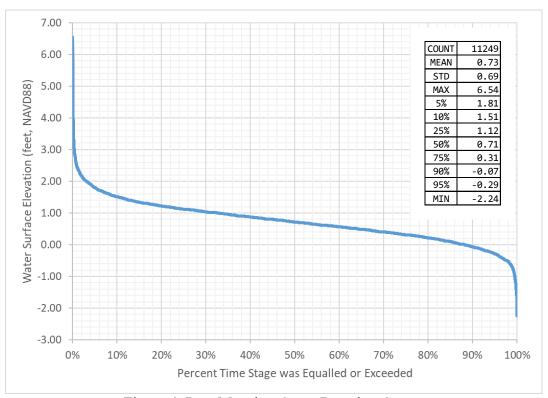


Figure 4. Pass Manchac Stage Duration Curve.

Lake Maurepas is influenced by diurnal tidal fluctuations and experiences periodic WSEL changes due to its connection with the Gulf of Mexico through the Lake Pontchartrain. NOAA operates the New Canal Station, LA (NOAA station no. 8761927) monitoring station in Lake Pontchartrain (NOAA, 2018). This station has been in operation since November 1982 and according to NOAA's website, the normal diurnal range at this station is 0.54 feet. According to hourly data collected from January-June 2018 at Pass Manchac, the average diurnal range in Lake Maurepas is 0.24 feet. The diurnal range in Lake Maurepas is likely less than that of Lake Pontchartrain due to the damping effect caused by the reduced conveyance capacity in Pass Manchac, and resistance factors such as shear stress, drag, and the width of the pass.

For the "typical" boundary condition, a WSEL time-series for Lake Maurepas can be generated using the average lake level and diurnal tidal range. The diurnal tidal pattern in Lake Maurepas can easily be modeled as a periodic sine function according to Equation 1.

Equation 1 $f(x) = A * \sin(Bx + C) + D$

Where:

A = Amplitude

 $B = 2\pi \div Period$

C = -Phase Shift * B

D = Vertical Shift

For the "typical" condition, the amplitude is equal to one half the average diurnal range (A=0.12), the period is equal to one lunar day (~24 hrs and 50 minutes [B=0.253]), the vertical shift is equal to the average lake elevation (D=0.73), and the phase shift is dependent on position of the moon, sun and other minor variables ("C" can be set to any real value, however the timing of the High and Low Tides will be set by this value). This simplified procedure doesn't account for more complex factors that effect tidal fluctuations, but it does produce sub-daily variations that are similar to "typical" conditions in Lake Maurepas. Measured hourly WSEL values at Pass Manchac from May 14th-24th, 2018 are shown in Figure 5, along with modeled output using Equation 1. During this period, lake levels were relatively constant, and the sinusoidal pattern generated from tidal fluctuations is especially evident.

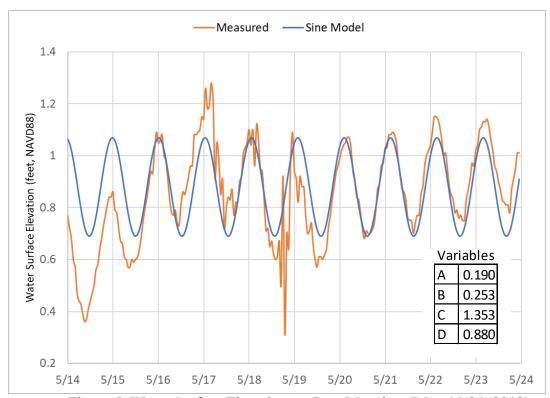


Figure 5. Water Surface Elevations at Pass Manchac (May 14-24, 2018).

4.0 ELEVATION OF RECORD

The water surface elevation (WSEL) of record in Lake Maurepas, as measured at the Pass Manchac station, occurred on August 30, 2012. On this date the WSEL at Pass Manchac reached 6.54 feet, NAVD88, at the same time that Hurricane Isaac made landfall along the Louisiana-Mississippi coast southeast of Lake Maurepas. Isaac's strong winds produced a large storm surge in southeastern Louisiana and Mississippi. Isaac was also responsible for producing over 23 inches of rain in Hammond, LA from August 25th – September 3rd, 2012 (Figure 6), produced maximum wind gusts of over 70 mph at the New Orleans Airport, and the USGS reported that the storm surge was so strong that the Mississippi River flowed backwards for almost 24 hours (Berg, 2013).

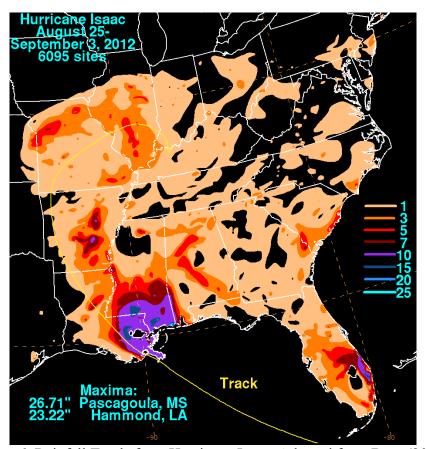


Figure 6. Rainfall Totals from Hurricane Isaac. Adapted from Berg (2013).

During Hurricane Isaac, measured streamflow at the USGS's Amite River at Port Vincent (07380120) gaging station peaked at 21,300 cfs. Also, as evident by the negative discharges measured during August 29th, 2012, the Amite River actually flowed backwards as the WSEL in Lake Maurepas rose rapidly due to the strong storm surge (Figure 7).

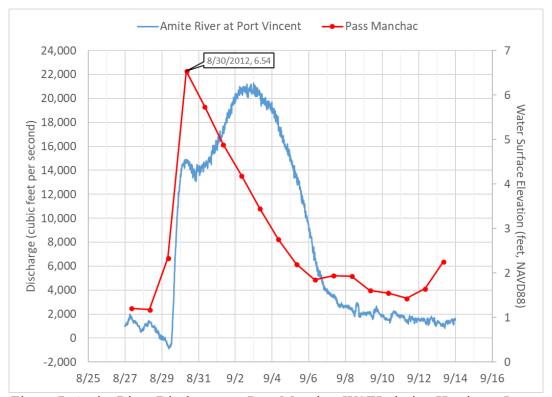


Figure 7. Amite River Discharge vs. Pass Manchae WSEL during Hurricane Isaac.

Using the WSEL of record as a constant stage boundary condition in the Amite River Hydraulic model is an option, however the probability of the peak streamflow and peak WSEL occurring at the same time appears to be unlikely. The highest measured WSELs in Lake Maurepas were caused by storm surges due to tropical systems, and high storm surges produced by tropical systems preceded flooding events due to strong winds at the edge of the system that create the surge; then flooding occurs later as the system produces rainfall on land. One alternative to creating the elevation of record boundary condition would be to use the WSEL values recorded during Hurricane Isaac (August 27th through September 6th, 2012), but shift the

A4-16 |

peak stage time to occur approximately three days prior to the peak discharge in the hydraulic model.

5.0 FLOODING LAKE ELEVATIONS

The 15 largest discharge measurements from 1985-2018 at the USGS Amite River at Port Vincent (07380120) gage are listed in Table 2. Lake Maurepas WSEL values measured at the USACE's Pass Manchac station are also reported for the same day as the measured peak flow along with the maximum stage recorded during the 5-day window around the peak flow date. Thirteen of the fifteen largest discharges, occurred during winter or spring months and only two of the events occurred during the northern Atlantic hurricane season (June 1st – November 30th) when storm surges produced by tropical storms are typically the largest. The flood of record on the Amite River occurred on August 15th, 2016 during the hurricane season but was not the result of a named tropical system and was instead caused by a slow-moving tropical low-pressure system interacting with an eastward traveling baroclinic trough to the north (Wang, Zhoa, and Gillies, 2016). Luckily, this system was not accompanied with large storm surges or flooding in region would have been further exacerbated. The only peak discharge event in Table 2 that was the result of a named tropical storm (Hurricane Juan), occurred on November 1st, 1985. This event also produced the largest peak and 5-day max WSEL values that were recorded, coinciding with one of the 15 largest discharges in the Amite River.

FTN was not tasked with developing joint probability statistics describing the likelihood of extreme flooding events coinciding with high WSELs in Lake Maurepas. The data in Table 2, however, show that, in general, peak flooding events occur much more frequently during the winter and spring months and are less likely to occur as a result of a major tropical storm. This means that the likelihood of extreme flooding occurring at the same time as a high WSEL event in Lake Maurepas is minimal. One possible alternative for developing a boundary condition from these data is to use the statistics from the 5-day maximum WSEL values to generate an average and worst-case scenario. With the exception of the Hurricane Juan peak (11/1/1985), the remaining 5-day peak values are between 0.83 and 3.03 feet, NAVD88, and the mean of all the 5-day peak values is 2.15 feet, NAVD88. This value could be used to represent the average flooding scenario stage boundary condition. The worst-case scenario flooding scenario could

also be modeled using the 5-day peak value measured during Hurricane Juan (4.91 feet, NAVD88).

Table 2. Amite River Peak Discharges vs. Measured Lake Maurepas WSEL.

			Pass Manchac (85420)			
DATE	USGS 07380120 Discharge (cfs)	Value Code ¹	Peak Discharge WSEL ² (feet, NAVD88)	5-day Max WSEL (feet, NAVD88)		
8/15/2016	199,000	P	1.30	1.72		
1/28/1990	69,500	P	0.73	1.02		
1/23/1993	48,400	P	1.79	1.93		
4/30/1997	45,300	P	1.08	2.02		
4/13/1995	44,700	P	1.92	2.48		
3/8/1992	43,100	P	1.05	2.03		
11/1/1985	42,200	P	3.62	4.91		
2/24/2003	42,100	P	0.95	1.59		
1/9/1998	41,000	P	NA	1.84		
3/14/2016	41,700	A	2.59	3.03		
4/4/1988	38,300	P	2.29	2.69		
1/13/2013	35,200	P	2.05	2.18		
3/17/1999	33,900	P	0.72	0.83		
2/28/1997	31,800	A	1.33	1.88		
5/18/2004	31,400	Р	2.09	2.09		

^{1.} P=Peak Value / A=Average Daily Value.

^{2.} NA = Not Available.

6.0 WIND INDUCED LAKE ELEVATIONS

The 10 largest daily average wind speeds recorded at the New Orleans Airport (USW00012916) from January 1984 through June 2018 are presented in Table 3. The top nine recorded values occurred during tropical storms that developed in August through October during the peak of the northern Atlantic Hurricane season. The tenth highest wind speed, however, was recorded during the spring, was one of the most intense extratropical cyclones ever observed and was dubbed the "1993 Storm of the Century" (Kocin, Schumacher, Morales, & Uccelini, 1994). The average wind speed during Hurricane Isaac is the largest on record and resulted in a powerful storm surge that resulted in the water surface elevation of record in Lake Maurepas. However, wind speed alone is not the only factor contributing to high WSELs in Lake Maurepas. Other factors such as storm intensity, forward speed, size, and angle of approach to the coast can affect storm surge intensity and drive the WSEL. This is evident by the low 10-day maximum WSEL associated with the 1993 Storm of the Century and the fact that similar wind speeds resulted in substantially different WSELs in Lake Maurepas during other events.

Table 3. Average Daily Wind Speed vs. Measured Lake Maurepas WSEL.

Date	Storm Name	USW00012916 Average Daily Wind Speed (mph)	Pass Manchac 10-day Max WSEL (feet, NAVD88)
8/29/2012	Hurricane Isaac	35.34	6.54
9/1/2008	Hurricane Gustav	29.53	NR
9/27/1998	Hurricane Georges	26.40	2.86
8/26/1992	Hurricane Andrew	25.50	2.81
9/24/2005	Hurricane Katrina	24.38	NA
9/12/2008	Hurricane Ike	24.38	NA
10/27/1985	Hurricane Juan	24.16	4.91
9/25/2002	Hurricane Isidore	22.82	4.45
9/15/2004	Hurricane Ivan	22.59	2.82
3/13/1993	1993 Storm of Century	22.15	1.22

One possible alternative for developing a boundary condition from these data is to use the statistics from the 10-day maximum WSEL values to generate an average scenario. Using this approach, the wind induced stage boundary condition would be equal to 3.66 feet, NAVD88, which is in-between the two scenarios that were suggested in Section 5.0.

7.0 REFERENCES

- Berg, R. (2013). Tropical Cyclone Report Hurricane Isaac (AL092012). National Hurricane Center. January 28, 2013.
- Kocin, P., Schumacher, P., Morales, R., and Uccelini, L. (1994). Overview of the 12-14 March 1993 Superstorm. National Weather Service.
- NOAA. (2018). National Oceanic and Atmospheric Administration Tides and Currents Station 8761927. Retrieved from: https://tidesandcurrents.noaa.gov/stationhome.html?id=8761927 [Accessed July 2018].
- URS. (2006). Mississippi River Reintroduction into Maurepas Swamp Project (PO-29). Volume IV of VII Hydrologic Data. June 29, 2006.
- Wang, S. Y. S., Zhao, L., & Gillies, R. R. (2016). Synoptic and quantitative attributions of the extreme precipitation leading to the August 2016 Louisiana flood. Geophysical Research Letters, 43(22).

APPENDIX 5: HYDROLOGIC AND HYDROMETEOROLOGIC STATIONARITY ASSESSMENT

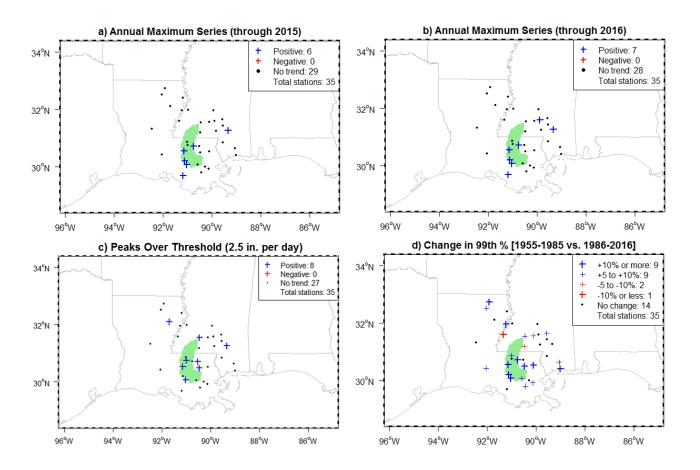
Supporting Research

Background

In 2016, the United States Army Corps of Engineers (USACE) issued Engineering and Construction Bulletin No. 2016-25 (hereafter, ECB 2016-25) [8], which stipulated that climate change should be considered for all Federally funded projects in planning stages. A qualitative analysis of historical climate trends as well as an assessment of future projections was provisioned by ECB 2016-25. Even if climate change does not appear to be an impact for a particular region of interest, the formal analysis outlined in ECB 2016-25 results in better informed planning and engineering decisions. For example, an increase in impervious area can often result in higher streamflow, even with no trend in heavy rainfall. Stationarity tests were performed on long-record precipitation and streamflow gages to assess whether non-stationarity needs to be factored in for future planning projects.

Precipitation

A stationarity analysis was performed on long-term precipitation gages belonging to the Global Historical Climatology Network. Only gages with 60 qualifying years were used, with a qualifying year being defined as one with less than 10 missing days of observations. In addition, given that climate change is expected to have an impact in the relatively recent period, only gages with one qualifying year later than 2007 were used. In all, 35 gages within and in the vicinity of the study region qualified for the analysis.


Three stationarity tests were performed:

- Trends in annual maximum series through 2015 and 2016.
- Trends in peaks over threshold (threshold: 2.5 in. per day).
- Percent change in the 99th percentile of rainy day rainfall intensity.

Results for the tests are shown in **Figure A5-1a** through **Figure A5-1d**. All trend estimates were determined using both Pearson and Spearman correlation coefficients (i.e. correlating the year with the magnitude). A null hypothesis of stationarity was assumed, and trends, if found, were only classified as significant if the confidence level exceeded 90%.

Figure A5-1b shows trend test results for Annual Maximum Series (AMS) using data through 2016. Of 35 gages, 7 were identified as having significant positive trends with none having significant negative trends. Assuming independence between gages, only about 4 gages are expected to show a trend by chance. Thus, the results suggest there is regional-scale non-stationarity towards higher AMS daily rainfall in the area. A similar test, but limiting data through 2015, showed a similar result with 6 of 35 gages showing significant upward trends. Thus, the 2016 heavy rainfall event does not appear to have an outsized influence on the AMS trend analysis.

Because AMS events measure only one daily rainfall per year, it could be prone to being affected by rare, very extreme events. To investigate trends in a larger number of rainfall events, a Peaks-Over-Threshold (POT) approach was also used. A threshold of 2.5 in. per day was used, which results in roughly two to five POT days identified depending on the exact location. For example, the POT time series from the Baton Rouge Ryan Airport gage is shown in **Figure A5-2**. Note the clear upward trend in the number of such events, with a maximum of eight events being recorded during exceptionally wet 2016. **Figure A4-1c** shows that 8 of 35 gages have significant upward trends in POT, with zero trends having downward trends. This corroborates the AMS trend results in **Figure A5-1a** and **Figure A5-1b**.

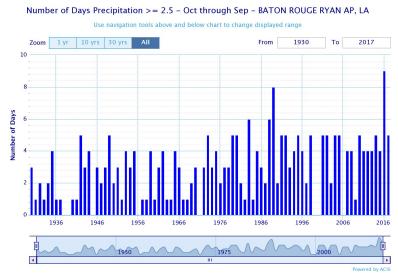


Figure A5-1a through **Figure A5-1c:** Stationarity Test Results Of Qualifying Long-Term Rain Gages: (a and b) Trends in Annual Maximum Series through (a) 2015 and (b) 2016, (c) Trends in Peaks Over Threshold (threshold: 2.5 in. per day), and (d) percent change in the 99th percentile of rainy day rainfall. intensity.

Figure A5-1d shows the percent change in the 99th percentile of rainy day rainfall across the qualifying gages, from the 1955-1985 period to the 1986-2016 period. For example, at the Baton Rouge Ryan Airport gage, the magnitude of the 99th percentile over the earlier period was 3.53 in., while during the latter period it is 3.98 in. (an increase of 13%). Of the 35 gages, 18 showed increases of at least 5%, while only three showed decreases of that magnitude. Collectively, these tests suggest that there is clear non-stationarity towards an increase in the magnitude and occurrence of heavy rainfall in the area.

Figure A5-2: Days with three or more inches of rainfall at Baton Rouge Ryan Airport, LA.

Streamflow

In accordance with ECB 2016-25, a stationarity analysis was performed to determine if there are long-term changes in streamflow statistics within the ARB, and its vicinity. Non-stationarity in stream flow can be a result of many processes, most notably changes in land cover, addition/removal/modification of water control structures, and changes in regional rainfall characteristics. To test for stationarity, the guidance provided by the USACE Non-Stationarity Detection Tool was used. This is a compilation of 16 tests measuring changes in the distribution, mean, variance, and trend of long-term time series. The tests can be broadly grouped into two categories: change point and trend. The former measures relatively abrupt "step-like" changes in the time series, while the latter measure longer term, steadier changes. Note that a time series with a trend can often also have an identified change point. Water Year Annual Maximum Series of streamflow (data through 2016) at the following six gages were used in the analysis and the data from these gages can be seen in **Table A5-1**.

Table A5-2 outlines the tests that were performed. The null hypothesis for all tests was stationarity; the alternative hypothesis of non-stationarity was accepted if confidence exceeded the 90% level of statistical significance. In addition to conducting the tests, each time series was manually inspected.

Results of the stationarity tests are shown in **Table A5-3**. For change point tests 1-12, the table shows the year(s) identified as a change point. For trend tests 13-16, tests 13 and 14 show whether a trend is detected, while tests 15 and 16 also provide information about the direction of the trend. Blanks indicate the null hypothesis (i.e. stationarity) was not rejected. Positive trends in streamflow were noted at three of the six gages: the Comite River near Olive Branch, Comite River near Comite and Amite River near Denham Springs. However, for the Olive Branch site, only two of the four trend tests found significant results, making it difficult to definitively confirm that non-stationarity was present. The two other sites had more convincing evidence to support an increase in streamflow over time. However, a significant complication was that numerous change point tests for these two gages revealed the 1970s as a period when there was a stepwise increase in flow. This appears to coincide favorably with data showing that the number of residential structures increased markedly during this time as shown in **Figure** A5-3 (Source: InfoGroup®). Thus, based on our experience, the increase in buildings and associated impervious area, appears to be the more plausible explanation for recent higher streamflow at this time. However, it is important to note that the 2016 flooding event was unprecedented within the context of the historical (gaged) streamflow records. Thus, it will be important to monitor trend tests over the coming years to check for any newly detected trends.

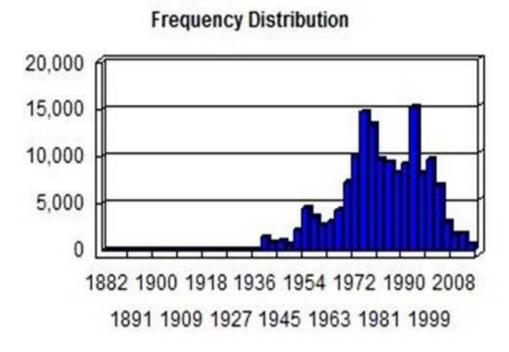


Figure A5-3: Residential Structures Built, By Date

Table A5-1: Streamgages Used in the Stationarity Analysis.							
Gage	Location	Years of record					
07377500	Comite R nr Olive Br, LA	74					
07378000	Comite R nr Comite, LA	72					
07378500	Amite R nr Denham Springs, LA	79					
07377000 Amite R nr Darlington, LA		67					
07376000	Tickfaw R at Holden, LA	76					
07375500	Tangipahoa R at Roberts	78					

Table A5-2: Stationarity Tests Performed	
Test	Туре
Cramer-von-Mises distribution	Change point
Kolmogorov-Smirnov distribution	Change point
LePage distribution	Change point
Energy Divisive distribution	Change point
Lombard (Wilcoxon) abrupt mean	Change point
Pettitt mean	Change point
Mann-Whitney mean	Change point
Bayesian mean	Change point
Lombard (Mood) abrupt variance	Change point
Mood variance	Change point
Lombard (Wilcoxon) smooth mean	Change point
Lombard (Mood) smooth variance	Change point
Mann-Kendall trend	Trend
Spearman correlation trend	Trend
Parametric trend	Trend
Parametric trend with Sens slope	Trend
Test	Туре
Cramer-von-Mises distribution	Change point
Kolmogorov-Smirnov distribution	Change point
LePage distribution	Change point
Energy Divisive distribution	Change point
Lombard (Wilcoxon) abrupt mean	Change point

Table A5-3a: Stationarity Test Results Using Annual Peak Streamflow.									
Location	Test1	Test2	Test3	Test4	Test5	Test6	Test7	Test8	
Comite R nr Olive Br, LA			1976	1977	1975				
Comite R nr Comite, LA	1960	1960	1976	1977	1959	1976	1960		
Amite R nr Denham Springs, LA		1991		1972	1970	1971	1976		
Amite R nr Darlington, LA				1984	2014				
Tickfaw R at Holden, LA				1972	1959				
Tangipahoa R at Roberts				1971	1941				

Table A5-3b: Stationarity Test Results Using Annual Peak Streamflow.									
Location	Test9	Test10	Test11	Test12	Test13	Test14	Test15	Test16	
Comite R nr Olive Br, LA	2014						positive	positive	
Comite R nr Comite, LA	1944			1944/1 946	trend	trend	positive	positive	
Amite R nr Denham Springs, LA	1921				trend	trend	positive	positive	
Amite R nr Darlington, LA	2014								
Tickfaw R at Holden, LA	2014								
Tangipahoa R at Roberts	1982								
*Note that Blanks indicate stationarity was not rejected.									

Conclusion for Stationarity Assessment

The Flood of August 2016 significantly increased the estimated 1% Annual Exceedance Probability flows for the lower reaches of Amite and Comite Rivers. The 1% AEP is still considerably lower than the flows recorded during that event.

The stationarity tests show positive trends in both precipitation and streamflow. For precipitation gages, regional-scale changes in Annual Maximum Series, Peaks-Over-Threshold and the 99th percentile of daily rainfall all suggest an upward increase in heavy rainfall magnitude and intensity. For streamflow, increases were found at 3 of the 6 tested gages (with no significant changes at the other sites): the Comite River near Olive Branch, Comite River near Comite and Amite River near Denham Springs. For the Olive Branch site, only two of the four trend tests found significant results, making it difficult to definitively confirm that non-stationarity was present. The two other sites had more convincing evidence of increased streamflow over time, though it is difficult to determine if this is due to changes in precipitation or impervious cover owing to a marked increase in the number of residential structures being built around the time of the changes in streamflow.